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Partitioning of Function
in a Distributed Graphics System

William 1. Nowicki

Abstract

Although recent advances in graphics workstations promisc much computing power for the future needs of
rescarchers, traditional approaches te software organization waste much of this power. Most systems treat the
workstation as cither a fixed-function terminal or a sclf-contained personal computer; these roles have
limitations that can be overcome by considering the workstation a multi-function component of a distributed
system. lraditional standard graphics packages and object-oriented window systems offer important
functionality, but a third approach, virtual terminal management systems, is morc appropriate for a
distributcd opcerating system.

The Stanford Distributed Systems Group has implemented such a distributed system for graphics
workstations. organized as a collection of servers providing scrvices to clients.  Major issucs arc how to
partitior functions between the server and its clients, and physically pirtition the server. In particular, the
service that displays graphical objects is called lhé\Vlrtual Graphics 1 cominal Scrwcc?(VG I'S). ‘The VGIS
architecture is described. as well as a prototype implementation. p

Vhis thesis discusses the trade-offs involved in partitioning of function in a distributed graphics system.

Performance is one important property traded for advanced functionality or decercased cost. To provide
adcquate performance in a distributed system. communication costs should be kept low, as ‘well as the
frequency of the communication. By providing modeling as well as viewing facilitics, the VG'T'S reduces the
communication required hetween applications and the service.

(e

Mcasurcments verify that performance is insensitive to network bandwidth. but depends heavily on CPU
speed and protocol characteristics.  Using structure provides important speed improvements in some cascs,
but other basic factors such as inner loop optimization and proper batching of requests make cven larger
differences.

Finally, conclusions arc drawn regarding the partitioning approaches taken in the VGTS. ‘The VGTS is
suitable for a large class of applications that perform graphics as an aid to user interface, and is portable to a
wide range of powerful workstations. Morcover, the VG'I'S can be used as a basis for further research on
many open questions in distributed systems.
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Introduction

When computers were first invented, their time was so valuable that claborate batch systems were devised.
People would spend hours preparing commands and data to be read, processed, and printed out by the
computer. In the 1960s the concept of timesharing was introduced, dedicating inexpensive terminals to cach
user, many of whom shared a computer. ‘The first timesharing systems were modcled after batch systems, but
soon the advantages of interactive programming became worth the extra cost. Throughout the 1970s many
computcr systems were designed specifically for timesharing.

Recent advances in VI.SI technology make powerful yet physically small and inexpensive computer systems
feasible. Related advances in network technology have made computer systems that communicate to other
systems thc rule rather than the exception. Onc of the ideas behind timesharing can he applied with today's
diffcrent cost constraints; replicate inexpensive components and share the expensive components.

1.1 Graphics Workstations

The cormputing resource dedicated to cach single uscr is called the workstation. 1n timesharing systems the
workstation is just a fixed function tcrminal, but the falling cost of microprocessors results in a shift to more
powerful workstations. For the rest of the discussion we will assume that the workstation contains some kind
of programmablc processor, some memory, at lcast one display device, and at least onc input device.
Workstations arc often conncected in clusters, forming a workstation-bascd distributed system, as illustrated in
figure 1-1.

The advent of high-performance graphics workstations has been a mixed blessing.  Inexpensive
micropro:essors scem to promisc unlimited computing power to satisfy cveryonce's needs. However, now that
the information being processed and viewed is becoming more valuable than the hardware doing the
processing, old techniques for organizing computing systems arc no longer valid. In particular, common
activitics like information display often have processors dedicated to themn, but still require access to other
computing resourccs.

Although they are interconnected, most workstation systems built to date continuc to treat the workstation
solcly as a fixed-function terminal or a sclf-contained personal computer.  More interesting roles exist
between these two extremes, especially considering the next logical step in the organization of computing
systems: many computing clements per user cooperating on the same task. To accomplish this cooperation,
the tasks must be partitioned or divided at appropriatc points depending on many factors.  ‘This thesis
attempts to investigate and characterize some experimental attempts at partitioning in a distributed graphics
system. ‘The goal is not a system that solves all the problems of distributed graphics, but rather to design and
build a prototype that can be used to evaluate onc approach.

1.2 Role of the Workstation

It is fairly certain that both computing power and communication capability will become more pervasive in
the future, and these trends will continue for some time. At present, however, the bottleneck in the
development of network-based systems has become the software, with much of the potential of powerful
workstation hardwarc being unrcalized.  ‘The first key problem is to find the appropriate role for the
workstation within the context of the whole system. ‘There arc three basic approaches to the role of graphics
workstations in a computing cnvironment: as a terminal, as a personal computer, and as a component of a
distributed systcm,
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. Cluster . Cluster A . Cluster
Network " Network " Network

User [E] m User L W User Cl w
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N G Gateway Long-haul
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) User = I!l Workstation
P Printer Server

9—-8" F File Server

T = Timesharing System

Figure 1-1: A workstation-based distributed system

1.2.1 The Workstation as Terminal

When a low performance workstation is used with a timesharing system, it is convenicnt to treat the
workstation as a terminal [91]. This concept applics not only to traditional alphanumeric terminals, but also to
bitmap (called “all points addressable™ by EBM) displays.  Bitmap displays contain an arca of memory which
stores every pixel of the displayed image.  ‘The advimtages of using graphics terminals with timesharing {
systems has been recognized for many years, but the cost of the necessary display hardware, compule power,
and communications bandwidth has been prohibitive until recently [70].

N One of the first graphics workstations with local nctwork capability was the Alto, designed and built by the
Xerox Palo Alto Rescarch Center (PARC) [142]). ‘The ADIS System [127], the Alto ‘Terminal Program [12],
and Deutsch’s Remote BitBlt protocol [47] were developed to allow programs on a timesharing system to use
an Alto as a display device across a nctwork, However, in cach of these protocols all but the lowest level
viewing opcrations were done on one particular host, with the workstation only manipulating bitmaps. This
was duc to the limited speed and main memory capacity of the Alto, designed in the carly 1970s. Since
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INTRODUCTION 5

current workstations have faster processors and larger memories, new architectures should take advantage of
this increased power.

Bell Lab's Layers System [105] for the Blit terminal [72], now called the Teletype 5620, provides a similar
bit-map intcrface to the application. An application can run on the terminal and communicate to a (single)
host using a higher-level protocol. Unfortunately, these protocols are not standardized, and the Layers system
is only designed for one particular kind of workstation to communicate with onc kind of opcrating system.
Since many users arc only concerned with onc operating system or onc terminal, these systems may be
successful. In fact, the ability to act as a terminal is an important capability that should be included in any
workstation-bascd system. However, cven the designers of the Layers system are working on a more flexible
approach that does not wastc the power of more advanced workstations.

1.2.2 The Workstation as Personal Computer

For higher performance workstations, one popular approach is to construct a small model of a larger
timesharing system. This is a simple and powerful idca pioncered by the Alto computer at Xcrox PARC, and
now adopted in many new products. Examples include the various Lisp Machines [16], the Perq [144], and
many other new commercial systems being announced wecekly at the time of this writing.

One principle motivation behind the personal computer approach is to avoid the partitioning problem, and
instcad offer a singlc “integrated™ system. But in rcality cach personal computer is isolated, resulting in a
highly partitioncd system with the following practical problems:

e Cost: There are economics of scale involved in devices such as disks. For example, 30 10 Mbyte
disks cost much more than a single 300 Mbyte disk. A modecrately sized disk would cssentially
doublc the current cost of the workstation. Typically configured 1.isp Machinces scll for $100,000
to $200,000. Since many organizations do not have $1000 terminals for cach member, they
certainly will not spend 200 times that amount for a single user.

o Reliability: An office environment is not as controlled as a clean, air-conditioned machine room.
Preventive maintenance and repair of dclicate mechanical cquipment is much casier for
centralized facilitics.

o Flexibility: The personal computer model provides for rigid control on the number of users; if
you arc not onc of the few who own onge, or find onc to share, you can not use any computing
resources during pcak hoars.

o Performance: There are two aspects of performance.  Although fast response to user interaction
(such as cditing [57)) favors personal computing, high-throughput and low-interaction activitics
(such as compilation) favor large shared processors,

o Comfort: Adcquatcly sized disks are large and noisy, producing an unwelcome intrusion into the
office environment, with associated power requirements and heat dissipation problems.  For
example, the Xerox 100 Lisp workstations at Stanford are physically centralized, with only the
displays and keyboards outside the machine room.

o Duplication: Many of the files on cach disk are duplicated. ‘This obviously wastes space, but
more importantly, it causes problems with propagation of updates and uscless duplication of
softwarc maintenance cffort.

There will still be many commercially successful personal computer products.  For example, the entire
UNix [111] operating system has been ported to a workstation with a locat disk interface for cach
workstation [68, 118]. Reasons for this success include the value many people put on total control, and the
“personal” nature of much computing [116).  For instance, a small business would probably initially prefer
onc scif-contained personal computer.
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6 PARTITIONING OFF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

However, if that business outgrows the single personal computer, and wishes to share large distributed
databases, the problems described here will cventually arise. Except for the low-performance computers
purchased for home use, most so-called “personal™ computers uscd for scicnce and busness are actually
purchased by some group or department, and are thercfore actually shared. Furthcrmore, the high cost of
these scientific workstations has limited shipments to only a few thousand units [153]). For larger, multi-

person projects that arc performed in rescarch and devclopment environments, small sclf-contained systems
are not always desirable.

Even if workstations arc available, current rescarchers still heavily use centralized server hosts. The
following arc somc reasons it might not be possible or desirable to run all applications on the workstation:

o The application may requirc fast floating point hardware.

o The application may require large virtual or physical memory.

o The application may require frequent access to a large database.

o The application may bc written in a particular language or dialect.

o The application may require a license to run on each diffcrent CPU,

e The application may access secure information that should not be transmitted over a network.
o The application may perform 170 directly to a particular device.

o The application may contain dcpendencics on a particular machine or operating system.

Even if the necessary resources are available as an option for the workstations, they are often too cxpcnsnve for
widespread use.

Onc could arguc that sincc hardware costs are decreasing, the personal computer model will incvitably
dominate in the end. But the decrease in hardware costs means that softwarce costs become relatively more
important [156]. 1t is well known that the largest portion of software life-cycle costs goes to maintenance [18].
‘Therefore, casc of software maintenance should be an important issuc in cvaluating a computing system
architecture. With individual personal computers, all users have to do their own soflware maintenance. This

results in a potentially enormous increase in the costs associated with distributing and installing new versions
of software.

Even considering only hardware costs, sclf-contained personal computers may cventually become more
cxpensive than other alternatives. Onc might reason that since memory costs are decreasing, and memorics
arc getting more dense, the trend will be to computer systems with higher ratios of memory to processing
power. However, a typical computer ten years ago was an IBM System/370 with about a million bytes of
physical memory [104). Today, a representative computer is the 1BM PC, with almost half the processing
specd. but only one tenth as much memory, typically about 100K bytes [54]. OF course the lower price of the
PC means that many more people can afford one. On the other hand, the organization that ten years ago had
a 3707138, can now afford a machine with a processor about cight times faster and sixteen times as much
memory. Large computers arc expanding principally by adding memory, while smaller computers are getting
less expensive principally by keeping memory small.

More interesting evidence is the relative price of memorics and processors. Today an MC68000 processor
costs about $50, and a 64K bit memory chip costs about $5. ‘Thus, if a system has more than about ten
memory chips per processor chip, the memory cost will dominate.  Since the cost to produce integrated
circuits in Jarge quantitics depends mostly on packaging considerations such as the number of pins, the ratio
of processor to memory cost will probably stay fairly Jow. ‘This provides motivation to design computer
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:" 4’? systems that take advantage of low-cost processors by replicating them for cach user, but sharc expensive
v resources such as memory.
-_‘{;::f 1.2.3 The Workstation as a Component of a Distributed System
-:.‘_-f.' Since most rescarchers who usc personal computers quickly recognize the problems caused by isolation,
T manufacturers usually provide some form of communication capability. For example, a file transfer program
Q may be used to transfer files cither cxplicitly or semi-automatically betwecn the personal disks. Other
‘ = approaches usc a remote disk or logical file system to intercept operations at the appropriate level, and route
3 ? them instead to a remote disk or file access user module. There are many practical rcasons to climinate
ek expensive components such as secondary storage from each workstation. A diskless workstation is
’- inexpensive, small, quiet, and has almost no moving parts to break.
" Scveral efforts, such as Locus at UCLA, modified standard opcrating systems to allow shared and replicated
cos: file systems [150]. Berkeley 4.2 UNIX was intended for diskless operation, although for performance reasons
:F’:{: most 4.2 systems still have local disks, and all programs still run on the workstation [68]. Somec attcmpts
vy extend timesharing systems to handlc remote execution [S3), but a more comprehensive solution is needed.
j‘_-? The file scrvice abstraction, developed in projects such as Woodstock [137], can be generalized into the server
At model, resulting in more flexibility of interconnection.
r
} 1.2.3.1 The Server Model
*\ The architecture to be presented in Chapter 3 treats the workstation as a multi-function component of a
oy distributed system. We do not waste its power by treating it solcly as a terminal, nor do we isolate it from the
o rest of the world, under the false assumption that it can be all things to all users. Rather, by supporting a
. distributed operating system the workstation may perfornn any function best suited to the user, the hardware,
b ¥ ' and the applications at hand [79, 86, 109, 155)).
e\l . ;
ol In this view, the operating system is just a collection of scrvers, and a way of accessing those servers. An

implementation of this modcl usually consists of cooperating kernels providing an inter-process
communication systcm, and services implcmented as proccsscs'. The kernel of a server-based operating

ko

J system acts analogously to a hardware bus, being essentially a communications switch. In addition to the |
.' N physical wircs used to connect modules in a hardwarce bus, a standard protocol is agreed upon to define the ;
- .*_._ semantics of the communication. Similarly, in our software model, in addition to the ability to scnd mcessage,
,p"‘-.,‘-; a protocol is defined for the meaning of the messages.

]
‘5N This model does not make the system versus uscr distinction; the design is in terms of “clients” which

L invoke the scrvices of a particular scrver. For cxample, the concepts of “terminal™ and *personal computer”™

o : ) . , .

T arc now merely roles played by some collection of processes and processors at any given time. ‘The result is

AR much morc flexibility in the partitioning of the resulting system.
R

It
b _\ﬁ .

::_{ 1.2.3.2 Network Transparency
o By considering the workstation as a component of a distributed system, we could consider a single

;’:: underlying communication concept for “nctwork transparcncy.” In gencral, network transparency is a

o worthwhile goal: programs should be as independent as possible of the location of their exccution and the

.r;-j resources they use.  However, cvery system has a boundary on this transparency, so the problem of

v communicating to the outside this boundary must be addressed cventually. In fact, all the computing

AN

I
“‘ ]In fact, in many ways the kernel itself can be viewed as a server, providing objects such as processes and messages.
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8 PARTITIONING OFF FUNCTION IN A DISTRIBUTED GRAPIICS SYSTEM

resources in the world can be considered a single computer system, with many disconnected components.
‘This motivatcs communication betwcen various kernels which may have vastly different underlying
communication concepts, resulting in what might be called a distributed kernel. Network communication
always has some cost associated with it, so perfect transparency is never possible with respect to performance.
Chapter 3 describes a system which has been developed to help address some of thesc issues.

1.3 Kinds of Partitions

The hardware trends discussed in the previous sections result in a physically distributed computing system,
with a corresponding partition required of the software. There are several forms that partitioning can take,
somc of which arc introduced below.

1.3.1 Physical Partitions

Computations can always be done more cfficicntly on machincs that arc built specifically for a particular
purposc. For example, a machine with large and fast disks is needed for fast scarching of databascs, while
interacting with a user requires powerful graphics capability. This suggests a physical partitioning by putting
particular opcrations onto specially built machines.

Partitioning has a long history in the ficld of computer graphics. Duc primarily to the high cost of
hardware, graphics systems of the 1960°s consisted of relatively powerless graphics devices connected directly
to relatively large-scale computers, cither single-user or time-shared. Howcver, as the graphics devices
became more sophisticated, the load on timeshared hosts, in particular, became insufferable,

Fortunatcly, the minicomputers of the 1970s led to satcllite graphics systems that scrved to offload a
variable amount of graphics functions on to another machinc [51, 55, 62, 148]. By judicious partitioning of
responsibility between the host and the graphics device, it was possible to achicve both better response and
higher throughput. The more powerful the graphics processor, the more functions that could be offloaded,
unti! the satellite system took on the appearance of the host. Taken to its extreme, this branch of evolution
led naturally to the personal computer - completing a round on the Wheel of Reincarnation [101), as
illustrated in Figure 1-2.

In configuration 1 of Figurc 1-2, the processor directly controls the display device. In configuration 2, the
display commands arc accessed dircctly from the processor's memory. In configuration 3, a special dual-port
memory hold the display commands. In configuration 4, a sccond processor has been added to send
commands to the display from the display buffer. The display control is similar to configuration 1, except for
the communication channel to the main CPU. At cach step through this cycle the partionability problems
must be addressed. In fact, the amount of distribution of function increascs at cach cycle.

FFor the 1980, increasingly powerful workstations, together with the proliferation of nctworks, have made
truly distributed graphics possible. "The higher bandwidth of available nctworks, when compared o that of
previous host-satellite interconnections, makes it even more feasible 0 achicve better performance by
partitioning the application between machines, especially if the remote host is significantly more powerful
than the local workstation. Morcover, it is now possible for a single workstation to have access to multiple
backend machincs, possibly simultancously. Many of those machines may support graphical applications that
can not be exccuted on the workstation - due to memory or language requirements, for example - but can use
the workstation for output.

On a hardware Icvel, a given computer system may contain several different processors, and cven a single
processor may be implemented as scveral functional units. This is consistent with further travel on the Wheel
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Figure 1-2: The wheel of reincarnation

of Rcinczrnation model cited above. These parallel architecturces provide much promisc for the future, but
this thesis will concentrate on partitioning at higher levels. Before experimenting with partitioning problems
into many picces (which will be required by future hardware), we should have a good undcrstandmg of how
to partition them into two picces.

1.3.2 Logical Partitions

In addition to the physical partitioning that may be motivated by cost and performance, expericnce in
developing local arca nctworks by the author has resulied in the realization that long before networks reach
their physical size limits, they vsually become unmanageable once they span scveral burcaucratic boundaries.
Even if the network is physically contiguous, artificial division along organizational lincs is oficn desired.

There is also a more fundamental logical partitioning between graphics systems and the application
program. That is, system designers must determine which facilitics the graphics system should provide and
which the application should provide. Similarly, cven when the functions of the service are decided upon, the
server may be implemented in many ways by partitioning its functions between modules or processcs, for
cxample.

1.3.3 Static and Dynamic Partitions

Another attribute of the partition is when it is performed. A static partitioning is performed once when the
program is designed. configured, or initialized. More ambitious projects might try to partition dynamically
during run-time. Load sharing is the usual motivation for dynamic partitioning. ‘This involves migrating tasks
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10 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

to more evenly distribute the load among scveral computer systems. 1.0ad sharing can be used only when the

systems arc relatively homogeneous. In this work we will deal with heterogencous systems consisting of
dedicated workstations and centralized server hosts.

There have been a few attempts at dynamic partitioning in hetcrogencous systems, by assigning tasks to
either the mainframe or host depending on current workloads. For instance, the 1COPS system at Brown
University attempted to perform dynamic partitioning [146, 128].  Onc application using the Brown
University Graphics System (BUGS) was dynamically distributed between a mainframe and a
minicomputer [97]. In another example, the CAGES system at the University of North Carolina automatically
generated the linkages at compile time for distributed graphics programs written in rL/1[62).  More
interesting would be a solution to the problem of handling multiple applications or multiple languages
simultancously.

We shall see cnough problems with static partitioning that it is not clear if dynamic partitioning is worth the
cost. In cither case, cfficient techniques for static partitioning and cffective mecasurements and cvaluations are
prerequisites to solving the more general problem. Without the ability to casily experiment with static
partitioning, dynamic partitioning should not cven be attempted.

1.3.4 Total and Partial Partitions

Unfortunatcly the word “partition™ has taken on a fairly specific meaning in the terminology of networks.
It usually refers to a single network that is divided into (wo or more totally disconnected smaller subnetworks
because of a failure of onc or more components. A typical example of this kind of partitioning involves the
failure of several links or a gateway, causing a network to divide into disconnected parts. It is desirable to
continuc functioning as much as possiblc within cach network partition.

However, if the disconnccted subnctworks never reconnect, then the problems are just the same as those of
several smaller networks in isolation. The interesting situations occur only when the parts are reconnected,
and information flows again between the parts. Expericnce with the Stanford University Network has been
that in reality slow or partial degradation is much more common than total failure.

This thesis concerns itself only with the information flow between the parts of a connected system, not the
details of recovery from link crrors after total partitions. A partial partitioning, in which communication
between the parts is possible but more costly than communication within cach part, may be incvitable or cven
desirable.  Additional reasons for this will be discussed in in Chapter §, in particular the sections on future
computing system organizations.

1.3.5 Protocol Design: the Result of Partitions

Many critical choices must be made when designing the protocols or interfaces between the parts of a
distributed system. ‘The protocols should be at i high enough level to make the communication efficient, but
ficxible enough to allow for most users’ needs. The designer must anticipate the degree of functionality that
uscrs will want, and provide enough scrvices to achicve that functionality, or clse the system will be too
restrictive to use. At the same time, if the service provides too many features, or requires too much interaction
with the client, the performance will not be adequate. 'This thesis cvaluatces the protocol choices made in one
dcsign of a distributed graphics system.
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1.4 Overview and Major Contributions

The spectrum of roles for graphics workstations from fixed-function terminal to self-contained personal
computer was cxamincd in this chapter, along with motivations for the study of the partitioning problem for

s distributed graphics systems. The next chapter discusses three different approaches to related problems:
[= traditional standard graphics packages, objcct-oriented window systems, and virtual terminal management
b systems. Chapter 3 presents the Virtual Graphics “Terminal Service architecture in fairly abstract terms. In

particular, the protocol between the server and a client application program is specified. Chapter 4 describes
! a prototypc implementation of the Virtual Graphics T'erminal Service, the VGTS user interface, and a sample

e application program. Chapter S investigates some issues involved in partitioning of function, the rationale
. behind the choices made in the VGTS design, and some simple performance modecls to motivate experiments.
. Chapter 6 gives the results of these measurements, and discusses the cost/performance tradeoffs.  Finally,

some conclusions and dircctions for futurc work are drawn in Chapter 7.

Although ﬁmny people were involved in the development of the VGTS, this thesis concentrates on the
following major research contributions by the author:

1. The virtual terminal concept was extended to support graphics by incorporating support for
structurcd display files, as well as conventional textual intcraction. The abilitics of virtual
terminals to support multiple distributcd applications are combined with the power and
portability of structurcd display files.

e

A

2. The application interface for defining graphical objects was specified and implemented scparately
from the user interface for viewing thosc objects. Both the advantages and disadvantages of this

N

{ strict scparation arc discussed.

N 3. The protocol used for defining objects was extended transparently across networks using several
transport protocols, resulting in distributed graphics programs. ‘These programs wcere actually

‘ used, so performance constraints were stringent.

:; 4. Mcasurcments were performed to determine the ceffect of various factors on performance of

.‘:' graphical applications. ‘T'hc mecasurcments verify that performance is insensitive to nctwork

" bandwidth, but depends heavily on CPU speed and protocol characteristics.  Using structure
provides important speed improvements in some cases, but other basic factors such as inner loo

vides 1 pI . P

-~ optimization and proper batching of requests make cven larger differences.

\) N

;’ ‘The results show that the VGTS is suitable for a large class of applications, and can be uscd as a basis for

b much further research,
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Related Work

This chapter compares the cvolution of three separate kinds of systems related to distributed graphics, as
illustrated in Figure 2-1. "The arrows in this Figure arc drawn in the direction of control flow. The first and
oldest linc of devclopment is the traditional standard graphics package, with the application programmer in
control over a graphics library. The sccond deals with so-called “object-oriented window systems™ for
personal workstations with the user in ultimate control. Finally, a third concept. virtual terminals, combines
both other approaches, with the user in control of the viewing process while the applications control the
objects being displayed.

Applications

Application User Methods l l l
l ‘ T l Virtual

Graphics View Graphics Terminal
System
System Manager System ¥s
Terminal User Terminal
User Terminal
a) Traditional standard b) Object-oriented c) Virtual terminal
graphics packages window systems management systems

Figure 2-1: Threce kinds of approaches

2.1 Standard Graphics Packages

It is important to examine the long history of Computer Graphics to discover what functionality has been
determined to be important.  Although many cfforts have involved ad hoc systems to producce a particular
picture or support a particular device, scveral standard cfforts arc more promising for our nceds.  Although
we are concerned with distributed systems for workstations, standards have the advantage of making graphics
software more readily available. Standards should also be studied so the common concepts and terminology
can be developed o compare different approachcs,

Early graphics systems were usually “packages™ of functions called by application programs. ‘The few
dominant manufacturers of graphics devices, such as Calcomp and I'cktronix, established de fucto standards
until the 1970s [76]. Users first would link a program with the appropriate object library. When the program
was cxecuted it would read some input data and produce output through the graphics functions. Since
graphics devices were expensive, a package was usually concerned with onc kind of device. 1F the user wanted
output on another device, cither the program could be linked with another version of the graphics library, or
the library would handle scveral possible graphics devices at run-time.

‘These types of graphics systems are most common since they have been in use for many years, and thus are
the subject of many standardization cfforts. Figurc 2-2 gives an overview of the interfaces between
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14 PARTITIONING OFF FUNCTION IN A DISIRIBUTED GRAPHICS SYSTEM

components of traditional graphics packages. At the highest Ievel arc application databascs where models are
storcd. Onc standard databasc format is called 1Gt:S for Initial Graphics Exchange Standard [3]. This is a
common database format to allow a user to exchange computer aided design data between systems of
diffcrent manufacturers.

Application

Database
l IGES

Application Program

GKS, Core, PHIGS, etc.
. Y
Metafile Graphics Package
VDM
> VoI
Y ¥ ¥
Hardware Device . :::hi?
i \"/
Standard : Oriver
Device ¢ ores
Device NAPLPS
Device

Figure 2-2: Standard graphics package interfaces

The application’s interface to the graphics system has scen the largest amount of standardization, with many
similar but incompatible standards for this level such as GKS, CORL, PHIGS, and others, to be described in the
remaindcer of this scction. Some attempts at lower levels of standardization include: VDI, between the
graphics system and the device driver, and NAPLPS, between the device driver and the device.

2.1.1 The SIGGRAPH CORE Graphics System

The ACM Special Interest Group on Graphics (SIGGRAPI) Graphics Standards Planning Committee
report, commanly known as CORE, has become widcly used as a model for graphics systems [147). One major
motivation for this standardization attempt was the undesired distinction madc at that time between directed
beam (vector refresh) graphics devices, and storage tube (and hard copy) devices. The importance of device
independence was emphasized at the 1976 Computer Graphics workshop in Scillac, France [60). This
workshop attempted to unify the treatment of the two kinds of graphics devices, and formed a basis for many
subscquent graphics packages such as CORE.
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Ve 2.1.1.1 Device independence
LN
Hard copy and storage tube devices have a simplc physical concept of a current location. For example, in a
. pen plotter the location of the pen was obviously visible. A scquence of move and draw commands was the
- most natural way to think of how a pen plotter created a picture. The CORE system extended this move and
- draw concept to three dimensions, using a synthetic camera analogy. Other state information such as the
b color or sizc of the pen, was also extended into the CORE system. The application constructed a model of the
& object in its own internal data structurcs, and would usc the graphics package only for viewing operations.
! On the other hand, directed beam graphics devices usually had display lists, which were traversed
;: repeatedly to display the picture. Changing onc clement in the display list would instantly change the item
being displayed. while storage tube and hard copy devices would be crased and redrawn completely for any
‘: modifications besides additions. CORE used the concept of segment to represent this rctained graphics
information.
[ 2.1.1.2 Coordinate Systems
E
N Another important contribution of CORE was the understanding of the importance of different coordinate
. systems. The CORE System and most other subscquent graphics packages deal with three coordinate systems:
' 1. World Coordinates (WC) arc arbitrarily defined by the applications programmer. In CORE these
. arc floating point numbers in cither two or three dimensions.
2. Normalized Device Coordinates (NDC) are usced to define a uniform coordinate system for all
- display surfaces. In CORE these arc two dimensional floating point numbers between zcro and
. one.
3. Device Coordinates (DC) represent the actual units used by the display device, usually unsigned
- integers of ten to sixteen bis.
- Coxi: implementations map from world coordinates to normalized device coordinates, with a driver for cach
. device mapping from normalized device coordinates to actual device coordinates. This allows most of the
graphics package implementation to be retained when new graphics devices arc introduced.
& 2.1.1.3 CORE as a Standard
- 'I'he CORE System was defined as a set of language-independent functions, with the mapping from the
L : . . . ~ . .
K. abstract function names to programming language identifiers left undcefined.  This resulted in
- implementations that were incompatible in many details, although system models and basic concepts were
o - fairly consistent across most implementations.
$ Although the CORE system was proposed in 1977, and was revised in 1979, in five years it has not yct .
) become an ofTicial standard, and may never become one, due to the success of European standardization
:' clorts. There has heen much more experience in the arcas of portability and device independence since the !
. 1979 report, as well as some reconsideration of the way modeling and viewing were separaied in CoRe: [133]

Since these issucs are also important in a distributed system, the CORE system was not suitable for our work.
However, CORE influenced subscquent standardization attempts, described in the next scctions, that have
overcome some of its problems.
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16 PARTITIONING OF I'UNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

2.1.2 The Graphical Kernel System

The Graphical Kerncl System [64] has become a popular standard that started in Europe with the German
DIN (Deutches Institute fuer Normung) and spread to America. German standards arc specified and
adopted more quickly than Amcrican standards because DIN is a government body while ANSI is a volunteer
organization requiring the consensus of competing industrial representatives. Although they are intended to
be as closc as possible, there are some slight differences between the ISO GKS and Amcrican National
Standards Institute Committce on Computer Graphics Programming 1.anguages (ANSI X3H3) version of
GKS. Most notably, due to the complexity of the GKS standard (which alrcady has ninc levels of subscts)
ANSI committee X3H35 has defined a subsct of the lowest level of functionality, called the Programmer’s
Minimal Interface to Graphics, or PMIG {122, 2].

2.1.2.1 GKS Workstations

GKS uscs the workstation concept to represent some logical input devices and onc associated output device.
This is in contrast to CORL in which only supports onc view surface and docs not support any rclationship
between input events from different input devices. GKS explicitly states that onc application can manipulate
multiple workstations; no mention is made of scveral applications sharing a single workstation. The idea of
placing the 170 devices on a physically separate machine from the onc running the application program was
onc of the original motivations for the workstation concept [48]. but most implementations of GKS have run
on only onc machine. Scction 2.1.2.7 will discuss the problems involved in a distributed GKS
implementation. The distribution capability has some subtle but important cffects on the structurc of GKS.

2.1.2.2 GKS Output Primitives
The graphics primitives used in GKS, similar to those in CORE, arc the following six:
1. Polyline: A sct of connccted lines drawn between a list of points.
2. Polymarker; Symbols of onc type arc centered at given positions.

3. Text: Character strings arc drawn at a given position. There arc many attributes to control the
orientation, spacing, and justification of text.

4. Fill Area: A polygon which may be filled with a uniform color, pattern, or hatch style.
S. Pixel Array: An array of pixels with individually specified colors or intensitics is displayed.

6. Generalized Drawing Primitive: A sct of points is transformed and passed through to the device
dependent driver.

‘The gencralized drawing primitive is intended to take advantage of special functions of the workstation, such
as the ability to draw arcs or curves.  Note that there is no notion of current position as in CORE, and
operations are in two dimensions only. ‘Three dimensional extensions are currently under development.

2.1.2.3 GKS Attributes

Abstracting slightly from the hard-copy analogy, GKS and CORE retain current values for cach of several
attributes, representing the state of the drawing device used for relevant output primitives. 'I'hus, although the
notion of current position does not appear in GKS. the state variables necessary to simulate a drawing device
are still nceded.  For example, the polyline primitive has linc-type (solid. dashed, ctc.). width, and color
attributes.  However, in GKS bundle tables can be usced to group attributes.  Instcad of specifying cvery
attribute on cvery output primitive, an index into the bundle table (a small integer) is specified, and the table
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gives values for all the attributes. For example, instcad of specifying a color absolutely everywhere it is used,
it could be defined only once to simplify changes.

2.1.2.4 GKS Segments

GKS scgments arc named with integers specified by the application. Segments may be transformed, made
visible or invisible, highlighted, ordered from front o back, deleted, renamed, and inserted into other open
segments. Every primitive within a scgment can have an attribute called the pick identifier which cstablishes a
sccond level of naming for use with the pick input device. However, the primitives within a segment cannot
be modified; the pick identificr serves only to distinguish parts of a picture used for graphical input. There is
an cxplicit function to sct the pick identifier. All primitives added to the segment until the next call to this
function will have the same pick identifier.

In GKS segments can be posted on actual workstations, called Workstation Dependent Segment Storage or
Wnss. Inaddition segments can be sent to Workstation Independent Scgment Storage (WISS). Scgments can
be moved back and forth between Wiss and WSS (actual workstations) under control of the application
program.

2.1.2.5 Graphical Input in GKS

The concept of logical input devices was used as a basis for extending device independence to graphical
input in GKS as well as CORI: [152]. The Cori: system trcated input and output functions as orthogonal
concepts. so, for example, the selection of view surfaces had no cffect on cchoing. On the other hand, GKS
associates logical input devices with workstations. GKS provides the following classcs of input devices:

Locator  Provides a position in world coordinates and a transformation number, determined by the
viewport in which the input occurred. A trackball or joystick is the typical locator device.

Stroke  Provides a scrics of positions in world coordinates and a transformation number.

Valuator Provides a single real number scalar value, from a onc-dimensional device such as a rotary
dial.

Choice  Provides the ability to choose among alternatives, like the button device in CORE. A non-
negative integer indicates a selection, and zero indicates no sclection.

Pick Provides a pick status, a scgment name and a pick identificr (the item “picked™). Primitives
outside scgments cannot be picked. ‘the typical pick device is the light pen, which senses
when the beam of a CR'I" passes over the point underncath its tip.

Strin Provides a character string. similar to the keyboard device in CORE,
g g

The original GKS specification did not have (he stroke device class, since it can casily be built on top of other
primitives, given a suitable semantic inodel of input devices [113).

At any time a logical input device is in onc of three modes:

Request  Allows the input device to accept request commands. When the application issucs a request, GKS
waits until input is cntered, or the operator enters a break action. Control is then passed back to
the application.

Event  GKS maintains an cvent qucuce.  An cvent report on this queuc contains the logical device
number and a value from that device. Lvents arc gencerated asynchronously by operator action,
An application can wait for an cvent, remove it from the queue, or flush events from the queue
without rcading them.

- n Iy - W

N ot o Y a
RAREC RN LR Gy
i) v a4y, X b

T "M .- "l B ‘l. -'.. L] -‘ .‘ .'. I.~ -
R g L e N

- [
e S
P ) Lt



18 PARTITIONING OI° FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

Sample Allows the input device to accept sample commands. Sampled devices do not cause events on any
qucue, but arc instcad polled by the application. When the application issues a sampic command,

ko GKS returns the current value of the device without waiting.
.!’
’: 2.1.2.6 GKS as a Standard
: Like CorE, GKS was defined as an abstract sct of operations instcad of a particular interface in a particular
,% programming language. However, cfforts are underway to standardive language bindings, so there is a greater
L chance that GKS programs can truly be portable, A FORTRAN binding is included in the ANSI standard, and
o work on other language bindings such as C[114] is underway. Unfortunatcly, even these standard binding
. cfforts arc hampered by the many different dialects of these languages.
fs Full GKS (highest levels for both input and output) includces 110 functions plus 75 inquiry functions. The
o

lowcst level of ISO GKS requires 52 functions plus 38 inquiry functions. The lowest level of ANSI GKS (no
input) requirces 31 functions plus 17 inquiry functions [122]. Of course, counting the number of functions is a

-, very coarse measure of complexity, but by most measures GKS scems to be a much simpler system to
e implement than CORE. There arc proposals for 31D extensions to GKS, since this lack is the major reason why
‘o Amcrican groups like SIGGRAPII opposc the standard.

Ad 2.1.2.7 A Distributed Implementation of GKS

One of the principle advantages of GKS for distributed workstation-based systems is the ability of the
o0 workstation concept to allow potential distribution. A recently-announced product called NOVA*GKS is an
- implemcentation of GKS that can be distributed across several machines, but still allows only onc application

K to be run at a time, and handlcs only one host at a time [149]. Nevertheless, NOVA*GKS can be examined as an
cxample of a distributed graphics system using GKS. The NOVA*GKS implcmentation consists of four major
layers: oo

1. GKS Interface - provides the functions specified in the GKS standard, implcmented as modules
B that arc linked with an application program.

2. Workstation Manager - handles device independent aspects of workstations, including
- workstation independent scgment storage (WISS).

3. Workstation Supervisor - provides software simufation of GKS functions that arc not dircctly
supported by the physical workstation or the device driver.

-

o, 4. Device Driver - low level device driver, which implements the graphics primitives and maps into

) device coordinates.

..

[ Between cach set of layers, an interesting coupling scheme is used. Instcad of directly calling the functions in

the lower level, all accesses must funnel down through a single Jower level supervisor function. ‘The lower level
supervisor can then cither be a large case statement which fans out to all the appropriate lower level
maodules, or it can encode the functions over a communicition line o a remote processor, where the fan-out
- then takes place. “Thus the choice of where the communication takes place and cven the kind of protocol used
can be donc at link-time with no changes to the rest of the package.
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- Proposed GKS output level 3 supports structured segments [130). The later Chapters of this thesis provide
H cvidence that structured scgments provide performance increases in a distributed cnvironment. As the name
o ‘j\ implics, this proposal is upward-compatible with the other levels of GKS. ‘Ihe main addition is the abitity of
*y scgments to call other segments.  An cxisting scgment can be reopencd for editing, and clements can be
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inscrted and dcleted. Fditing is performed using an element number, an integer count of elements within a
segment. For cxample, the first clement in a scgment is number 1, then 2, ctc. It is not clear what happens
when an clement is added or deleted from the middle of a segment - probably all the clements change their
numbers, leading to possible confusion. For this reason labels may be used to-refer symbolically to clements
instcad of using thcir numbers. Labels arc known only within a scgment; scparatc extcrnal names arc used to
namc wholc scgments.

The transformation of cach primitive is the concatcnation of all segment transformations of the ancestors of
the primitive. Thus a stack of matrices is stored, starting with the identity transformation, multiplying the
current matrix by the call transformation matrix and the called segment transformation matrix, and pushing
the result onto the stack for cach scgment, starting with root scgments.

‘The contents of scgments can retricved, and scgments can be stored on metafiles. There is a call to write
private data to the scgment, which scems to indicate a desire to use the scgment facility as an application
databasc. A total of 15 new functions arc added to GKS for this level, so the complexity of GKS is increased
only slightly. Howcever, run-time overhead could be significant, since a total of 29 attributes (in addition to
the transformation matrix) arc pushed and popped during cach segment traversal. The GKS output level 3
proposal was a reaction to the PGS cffort to be described next. ‘The principle advantage is compatibility
with many GKS implementations and applications currently being buitt.

2.1.3 The Programmer’s Hierarchical Interactive Graphics Standard

A more recent standardization cffort has produced the Programmer’s Hicrarchical Interactive Graphics
Standard (P1GS) [4]. As its name implics, PiiiGs allows arbitrarily decp hicrarchica! spccification of
graphical objccts, instcad of the less general segmentation mechanism in COrE and current GKS. One of the
stated reasons for this more claborate structure of objects is the increased cffectivencss of making changes to
the display in support of intcractive graphics. An important design criterion was to provide adequate
performance in interactive applications, by taking advantage of today’s more powerful graphics workstations.

The actual display primitives in PHIGS arc similar to those of GKS, although they appear in a more
claborate framework. There arc both 2-dimensional and 3-dimensional functions. Display primitives, along
with attributes, viewing operators, modeling transformations, and rcferences to other structures, can all be
clements of a structure. Structures can be cdited, by dcleting and inscrting clements.

PHIIGS includes the concept of workstations, but workstations do not logically storc the graphics data. An
application program defines a picturc by adding cntrics to the device independent structure database. The
workstation driver then reads the databasc to causc the physical terminal screens to be drawn.  Each
workstation has at most onc fixed-size rectangular viewing surface, and may have any number of input
devices.  Workstations have descriptor tables that describe the capabilities of the workstation.  The
applications program can inquire about which capabilitics arc available and adapt accordingly.  Although
programs written using this feature can work on several different types of workstations, the application
programmer must anticipate all possible conligurations when the program is written,

Each attribute corresponds to a “register™ of a virtual workstation; these registers are changed by commands
in the header of cach structure, and objects are rendered in the color that is in the registers at the time of the
rendering. Unfortunately this introduces much complexity in the device driver, because it must keep track of
the state of all of these virtual registers,
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2.1.4 The LBL Network Graphics System

The Network Graphics System was developed by Lawrence Berkeley Laboratories as an extension of CORE
for a network cnvironment [24]. Although this is an on-going development cffort, as opposed to a proposed
standard, NGS is similar in spirit to PHiGs. l.ike GKS and CORE, it was dcsigned for vector refresh and
storage tube dcvices, and later extended to raster devices.

The Network Graphics System allows the definition of hicrarchical structurcs, which can be deleted or
appended, but not otherwise modified [25].  Attribute information is stored scparately from the object
definitions. so it can be changed dynamically. Attributes can be bundled, or controlled explicitly and
individually. Even though bundling capability is provided, the authors state that direct control is expected to
be used most often,

2.1.5 Virtual Device Interface and Metafile

Sincc most graphics packages use some form of normalized device coordinates, this is another logical
candidate for a standard partitioning point. The graphics package can be written in terms of a virtual device,
which is then implemented on the physical device. The Virtual Device Interface specification (VDI) is yet
another graphics standardization cffort of ANSI committee X3H33 [7). As shown in figurc 2-2, the Virtual
Device Interface specifies the low level target for graphics packages. 'The Virtual Device Metafile (VDM)
standard [S], similar to that developed at Los Alamos National Laboratory [110], is an encoding of the Virtual
Device Interface into a strcam of bytes to be stored on a file.

As indicated in Figure 2-2, the VDI specification could be realized in a real device, or at Ieast a “black box™
which the uscr treats as a hardware device. The device drivers would be written by the manufacturer of the
graphics device, instcad of the author of the graphics system. Since the VDI specification is preciscly defined,
it should be possible to put the implementation of the the virtual device on a different machine than the one
running the graphics package. Unfortunately, this interface involves both a high frequency and large amount
of information intcrchange. "Thus it may not be suitable for partitioning when communication costs are high,

2.1.6 Videotex and Teletext Systems

Other systems have been developed for situations with high communication costs between the graphics
system and the device.  Examples that deal with partitioning are Videotex and ‘Teletext. Videotex is an
interactive communications scrvice that delivers color graphics information from centralized databascs. ‘This
information is most often delivered over telephone lines, decoded by a dedicated hardware device, and
displayed on a television monitor. Thus, videotex is intended for direct use by consumers, combining two of
the most familiar picces of clectronic cquipment in most homes today: the telephone and the television sct.
In addition to providing information, vidcotex allows users to perform transaction such as ordering products.
Onc of the major stndards in this arca is the North Amcrican Presentation l.evel Protocol Syntax
(NAPIPS) [0). Since telephone companics in Burope are gencrally smaller and run by the government, there
have alrcady been several videotex systems in operation in Britain (PRESTEL) and France (ANTITOPE).

Teletext is a similar technique designed to bring information scrvice to home consumers. However, teletext
uscs onc-way broadcast transmission, often through cable television systems. I'he major standard in this arca
is the North American Broadcast ‘l'cletext Specification [11]. “T'his standard specifies exactly how the messages
arc encoded for transmission, which arc the lower Ievels (physical to transport) of protocols. ‘I'he data can be
transmitted on standard television channels, during the vertical blanking interval, or cntire channcls can be
dedicated to teletext, ‘The presentation level of NABTS is NAPLPS,

Unfortunately, since these protocols are directed to a consumer market, they are limited in their abilities.
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For example, they arc often tied to specific common video resolutions that are lower than typical scicntific
workstations. Morc importantly, they are intended for very inexpensive terminals, so they would waste the
power of most modern workstations. In particular, they handle only one activity at a time. Since we are
interested in future computing systems that contain multiple processors exccuting concurrently, we will next
examine systems that can managge this concurrency.

2.2 Object-Oriented Window Systems

The desire to use graphics as an aid to user interface has led to the development of object-oriented window
systems. In these systems, there might not be application programs, per se, but rather objects that respond to
the control of the user. An interesting paraphrase of the object-oricnted window system philosophy is “don’t
call us, we'll call you™. That is, instcad of the application program calling functions in the graphics package,
the graphics system calis uscr-defined functions to display themselves when needed.  This mechanism, the
graphics system calling client software, is referred to as an wp-call, in contrast to down-calls of traditional
graphics packages.

[t ‘This difference in control reflects the different application arcas for which these systems were developed.
The graphics systems discussed in the previous scection consider the picture to be the main purpose of the
program. ‘Thus they are suitable for application arcas such as commercial animation in which rcalism and
precise control of the picture arc most important. Howcver, many programs arc intended to perform some
other function, with graphics as a side-cffect. For example, the principle function of an integrated circuit
cditor is to cdit integrated circuits, not to draw beautiful pictures of them. In fact, the information being
displayed by programs is often abstract, so “rcalism’ is mcaningless in these cascs.

2.2.1 Smailitalk

: Smallwalk is a scrics of languages based hcavily on graphics with an object-oriented window system [58].
v ‘The language was first designed as a tool for rescarch by the Learning Rescarch Group at Xcrox Palo Alto
) Rescarch Center. In their view, the idcal system would use powerful yet compact and portable *“personal
dynamic media™ which students could usc and interact with [90]). The idcal personal dynamic media was
called the dynabook, and corresponds to a futuristic view of today’s graphics workstations.

A Smallalk system is composed of objects, which consist of some private memory and a sct of opcrations.

The programmer specifics these operations as miethods that are invoked when objects receive messages.

Advantages of such an approach include extensibility; applications can definc their own graphics objects and

primitives because screen updating is controlled by the application itsclf. On the other hand, the programmer

. can declare a class to be a subclass of another class, so that operations arc inherited. Only the new operations
have 10 be defined, so the extensibility can be performed without much programming overhead.

. 2.2.1.1 The Smalltalk Environment

Smallalk is a graphical, interactive programming cnvironment. One key aspect of the user interface of
Smalltalk is the usc of a pointing device such as a mouse to sclect items instead of typing commands [S0].
Many of these idcas originated in the NLS system at Stanford Rescarch Institute by Englebart and others
during the latc 1960s and carly 1970s [49]. Although NLS was uscd only within SR, the system is now called
Augment and markcted by T'ymeshare corporation,

Smalltalk, unlike Augment, is intended to be implemented on self-contained personal computers which
include a single large address space and a disk. Unfortunately, implementations of Smalltalk on commercial
microcomputcers have failed duc to the performance problems of small processors and storage devices. One of
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the few machines that can run Smalltalk with adequate performance is the Dorado, a very high-performance
and expensive scientific computer developed at Xerox PARC[75]. Workstations arc becoming more
powerful, but machines in the class of the Dorado will be expensive for some time to come. Although using

- the object-oriented approach of Smalltalk at all levels may not be desired, the user interface advances are
Se being adapted to other systems.

:'E 2.2.1.2 Smalitalk User Interface

=

v, The uscr interface of a Smalltalk system typically consists of scveral Views of objects on a gray background.
' The name “window system™ comes from the appearance that these views are “windows™ into the world of

Y objccts. ‘The uscr controls a small arrow called a cursor by moving the pointing device. Dirccting activity to a
:,. particular picce of information in a view is donc by making a selection. The system provides immcediate visual
:C;{ fecdback to indicate the sclection. For example, the sclection is often displayed complemented (black to
Ko white and white to black). At any particular time, only one view is sclected, indicated by a corplemented
3 title, and appcaring to lic on top of any other overlapping views.
N Pop-up Menus are also uscd to sclect commands. In response to a user action such as a button press, a list of
& commands appcars underncath the cursor. While the button is held down, the cursor is moved to sclect one
::3 of the commands in the menu. When the button is relcased, the sclected command is carried out. Some
(" command menus are particular to the object being displayed in the sclected view, while other command
1% menus are uniform across the entire system. Similar powerful user interfaces have been incorporated into
= other object-oricnted singlc language integrated environments, such as on the New Window System for the
o Symbolics Lisp Machine, through a language cxtension called Flavors that provides objects with inheritance
o of operations from multiple super-classes [157).
=
! 2.2.2 ““Lisa Technology”’
'.'_{ The Star word processing system by Xcrox corporation [124] incorporated many of these object-oricnted
e idcas into a commercial product using the fairly conventional prograimnming language Mcsa [87]. The Star
ﬂ system uscd an analogy between the graphics screen and a conventional desk top. “IThe screen contained icons,
o small symbolic images that invoked actions when sclected by ihe inouse. For example, moving a document to
J a filing cabinet icon caused it to be stored in a file server, while moving it to a printer icon caused it to be
" printed. ‘The Star developers claimed that interfaces using icons were casicr to Icarn and less error-prone than
_:§ conventional textual command languages.
" The Cedar Viewers System [92] was developed at the Xcrox Computer Science [aboratory for their
i prototype sofiware development environment called Cedar [46, 140). 'I'he Cedar environment was intended
“{ to combinc the hest features of Interl.isp, in particular the Programmer’s Assistant [139], with the Mcsa

program devclopment environment [99].  “The application program specified procedures to be called in

- response Lo input cvents.  These procedures used the Cedar Graphics Package to draw the objects they
e represent on the screen when requested [154).

T Unfortunately the Star system suffered from slow response times, and the Cedar system required very
o

cxpensive computers such as the Dorado to run cflectively.  Similar user interface functionality was made
available for much lower cost with the introduction of the Apple Lisa and Macintosh computer systems {159).
‘The Lisa and Macintosh software borrowed the desk top metaphor from Star, with icons representing data
- objects such as documents. Since these machines were the first to gain widespread attention, such systems
have been called examples of “Lisa Technology”. Lisa was intended as a low-cost office personal computer,
so its performance was also fairly slow, with some operations taking 30 scconds. ‘This was due, for example, to
swapping of scveral megabytes of object code into a physical memory that was only cxpandable to onc
mcgabyte.
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2.2.3 Other Window Systems

An important rescarch cffort has been the Canvas system [13]. and its successor, called Sapphire, developed
at Carnegic-Mecllon University for the Spice project. Sapphire (Screen Allocation Package Providing Helpful
Icons and Rectangular Environments) provides a virtual bitmap which applications can manipulate any way
they wish [95). Applications can specify exact location and shape of the windows, or be notificd when location
and shapc is changed. Each window can be transparcnt, or can take responsibility for remembering what it
obscures. For cxample, pop-up menus are implemented as windows.

Some of the user interface ideas of object-oricnted window systems have becn implemented on traditional
text-only [158, 65] or vector display terminals [89], although a full bitmap display is desirable, and becoming
morc prevalent, especially in rescarch environments [23].  More important is the requirement of shared
memory for the many procedure calls in this approach. Some systems have extended the up-call concept with
remote procedure calls, with inconclusive performance results {59)].

2.3 Virtual Terminal Management Systems

As we have scen in the last two Sections, graphics packages put the application in control, while object-
oricnted window systems put the user in control.  This distinction between main-strcam standardization
efforts and the window system line of development has only been touched upon in the literature. Partly this is
because of the delay involved in standardization cfforts; the current standards were designed for hardware of
inore than ten years ago. Since the workstation-based distributed systems described in Chapter 1 did not exist
ten years ago, these standards do not casily Iend themselves to a distributed environment [9).

Onc of the few cfforts to combine these two lines of development was a window system for a storage tube
display {115]. The basic obscrvation from this work was that the advantages of the two approaches can be
combined if the problem is viewed as onc of resource management. Since a major role of an operating system
is to manage hardware resources, recent rescarch in resource management by operating systems, in particular
the management of terminal systems, should be examined,

2.3.1 Network Virtual Terminals

The name “virtual terminal™ was first used during the development of protocols for long-haul networks
[43]. Problems arose duc to the large number of different operating systems and terminals that needed to
communicatc in the network. 1€ there were n types of terminals and m types of operating systems, then n x m
terminal handlers were needed. 'This Ied to very large software costs as networks diversified.

Instead of forcing cach computer system to handle all possible types of terminals, cach could handle only
onc abstractly-defined network virtual terminal. ‘I'he conversion from virtual to real terminal would be
performed by the machine to which the terminal directly connects.  ‘This is similar to the virtual device
approach deseribed in the previous section, also usca 1o provide device independence.  As workstations
become more powerful, they can be considered as nodes in a network, and the virtual o physical terminal
translation could be performed by workstations.

2.3.2 Rochester’s Intelligent Gateway VTMS

Another advantage of the virtual terminal concept is the support of multiple applications simultancously.
Traditional graphics packages described in the first section of this chapter assume onc application is in total
control at any time. Although the window systems discussed in the previous section display multiple contexts,
usually only onc application is active at any time on the personal computer. One of the first attempts to use
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multiple concurrent processes in multiple windows for program devclopment was a system called
Copilot [136). The ability to monitor concurrency naturally through a window system has been determined
by the author to be invaluable in a distributed environment.

Rochester’s Intelligent Gateway was designed to provide a uniform user interface to manage distributed
resources [78, 79]. The RIG Virtual Terminal Management System (VI'MS), was one of the carliest systems to
provide simultancous access to multiple, possibly distributed applications {77). VIMS mapped any number
of virtual tcrminals to a physical screen simultaneously, and each virtual terminal could be written to or
quericd for input by applications throughout the distributed system.

In RIG the rcsource management problem was viewed fundamentally as a problem of process
management, with requests sent to server processes through messages. ‘T'able-driven command interpreters
were also provided to enforce a consistent user intcrface across different tools. ‘These contributions
significantly influenced many subscquent eftorts, including the rescarch described in this thesis. Howcever,
VTMS did not provide graphics support, nor did it provide cffective terminal cmulation.

2.3.3 Apollio Domain

The Apollo Domain workstation-bascd distributed system uscs some of the concepts of virtual tcrminals as
developed in VIMS[8]. Domain also provides a distributed file system, and other distributed objects.
However, its architecture applics to only one particular manufacturer since the network transparency is
handled at a very low level: demand paged virtual memory. Since most rescarch computing environment are
very heterogencous, 1domain cannot be used to solve all partitioning problems [37)].

2.3.4 The Virtual Graphics Terminal Service

The extension of the virtual terminal concept to graphics is the subject of the next two chapters. The system
described here is called the Virtual Graphics ‘I'erminal Scrvice, or VGTS?2, the name reflecting the VI'MS
conceptual basc [81]. The VG'I'S takes an approach different from [Domain's, handling transparency at a
much higher level: abstract operations. ‘This allows operations to be partitioned between machincs of very
different architectures running different operating systems, and using vastly different network technology.

The VG'I'S interface to the programiner is much simpler than most of the systems discussed in this chapter.
For example, the NGS working design document [25] has a partial list of 181 functions, while the VG'TS
progranuncr’s interface is about 30 functions. Of coursc these other systems may provide more functionality
in somc arcas. but it is not clear that this functionality is always nccessary.

The next two chapters will provide more dctails on the architecture and implementation of the VGTS,
including morc comparisons to both standards and window systems. Chapter 5 will examine these types of
design tradc-ofTs in depth.

2Pronounccd “Vee Gee Tee I'ss”, that is. there is no atiempt at pronunciation of the acronym.
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Architecture of the VGTS
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As we have seen in the last two chapters, the functional partitioning problem is an important onc that is not
adequatcly addressed by cither traditional graphics packages or window systems. In order to perform
cxperiments on the partition of function we have first designed an architecture for a distributed graphics
system, as described in this chapter. Only the architecture is described here; an actual implementation is
described in Chapter 4 and rationale for the design is given in Chapter 5.

v
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3.1 The Environment

No singlc design will be appropriate for every circumstance. It is important to limit the scope of the
anticipated cnvironment because most systems that try to do everything for cverybody, end up not doing
much weil at all. This section describes the particular environment for which the VGT'S was designed.

3.1.1 The Stanford University Network

The VGTS architecture was designed within the context of the Stanford University Network (SUN). SuUN is
a rapidly cvolving environment consisting of:

o graphics workstations, such as the Xcrox 1100, Symbolics 3600, SUN [15] and IRisS [39];
e staadard timesharing systems, such as DICSystem-20/Tops-20, VAX/UNIX, and VAX/VMS; and

e dedicated server machines, for high quality and high volume printing, filc storage, tcrminal
multiplexing, and gatcway scrvices; 4

intcrconnected by various local networks, including about 25 different Ethernet segments [94).  Various
machinces arc also connected to long-haul nctworks such as the ARPANIET, cither directly or through gatcways.
This fits the gencral model illustrated in Figure 1-1.

SUN is representative of many workstation-based distributed systems currently in place or being developed
throughout the computer rescarch community [14, 119]. These systems typically provide the cquivalent of:

e powerful workstations with:

o a general-purpose processor (I MIPS or more)

o a large local physical memory (1 MByte or morc)

o a high-resolution raster display (1000 by 1000 or morc pixcels)
o a large virtual address space (O 20 bit)

o a graphics input device (such as a mousc)

o an optional disk

2 a7 ek PR ™ T

cach usually dedicated to a single user at a time;
e a fast (O 1 MHz) communications nctwork that will link the workstations;
e a number of dedicated processors providing printing, file storage, general computation support,

and other scrvices; and access to timesharing or special-purpose computers and to long-haul
compuler networks,

R S e s O

The architecture we arc about to describe is well-suited to any such system,
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3.1.2 The V-System

The software environment uscd for this research is called the V-System. Logically it consists of a
distributed kernel and a distributed set of server processes. The distributed kernel consists of the collection of
kernels resident on the participating machines. Communication within a single graphics workstation is via
fixed-size synchronous messages, using the V kernel [31, 32).  These message scmantics were originally
developed in the Thoth [29] system and later used in Verex [30). The individual kerncls are intcgrated via a
low-overhead inter-kernel protocol (IKP) that supports transparent interprocess communication between
machines over a local network [164].

Servers include network servers, storage servers, executives (command interpreters), and, of course, virtual
graphics terminal servers.d The V-System softwarc architecture is cspecially tailored to communicate with
cxisting timesharing operating systems such as Unix, VMS, and Taps-20. A uscr-level program called the “V
server” runs on the timesharing machines and implements the V inter-kernel protocol. Programs running
within the V cnvironment can then access file service or remote execution of programs transparcntly on the
timesharing hosts as well as the workstation. Other protocol architectures like I1P/TCP [106] and PUP [19] are
also uscd to communicate with dedicated servers and larger or more remote time-sharing machincs.

The V-System architecture was designed to allow flexible interconnection, similar in naturc to hardware
organizations. Consider an opcrating system kernel as a bus, which provides a standard interface to connect
moduies. In computer hardware, the bus is usually a simple, passive device. The V-System takes into account
multiple busses in both its hardware, as scen in Figure 3-1, and its software, as scen in Figure 3-2[80]. The
striking similaritics between the hardware and softwarc organizations are intentional. Note that busses
correspond to cither operating system kernels (usually small and synchronous) or network protocols (larger
and asynchronous). Hardware modules correspond to software processes in this analogy.

TN TN WL T TR e e
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Figure 3-1:  Hardware organization of the Stanford V-System

Bus adaptcers correspond to network server processes, which can also be considered protocol converters.
Onc major reason for hardware bus adapters is the availability of many peripheral devices for certain old
busscs. The adapter allows the usc of the old peripherals on new systems, without the need to redesign all the

3

We will refer to both the service and the server as VGTS. The latter is the software module that provides the former.
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4 Figure 3-2: Software organization of the Stanford V-System
N interfaces. Similarly, much software for older operating systems can be encapsulated and augmented in this
3 model, instcad of being replaced.
.
‘ 3.1.3 The VGTS
. In the V-system, the workstation provides a virtual terminal service, similar to the VEMS in RIG [78], but
y extended to include graphics. The VG'T'S acts as a inultiplexor, handling requests from clients to cdit data
X structurcs representing graphical objects. It then uscs a real terminal protocol to actually draw the objects on
the screen.
The following arc some attributcs of the VG'I'S which distinguish it from rclated work:
. e The VGTS model is declarative rather than procedural.  Instcad of describing how to draw a
y picture, the application describes what is to be drawn. The user then specifics where the picture
1 should be displayed. ‘Thus, uscrs control physical terminals, while applications control virtual
\ terminals. '

e Objcects can be constructed with hicrarchical structurc. An object can consist of primitives or calls
to other objccts, which can in turn be defined in terms of other symbols. This is in contrast to
systems like GKS that allow only one level of structure (usually catled scgments).

o 'Ihe VGIS supports truc device independent applications.  There is a standard  high-level
interface, catled the Virtual Graphics Terminal Protocol (VG'TP) between a VGIS and its clicats.
Different terminal drivers exist for cach real terminal, with the VGI'S handling all the dctails of

- the real graphics protocol.

. e The VGTS implementation and interface arc portable to a range of relatively high-performance
‘ devices. 'This contrasts with most of the object-oricnted window systems that arc tailored to a
: spccific machine or language environment.

e 'The VG'I'S supports distributed clients.  Applications can run on the same workstation as the
VGTS, on another workstation, or on some large computation scrver. Since the communication is
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b

N at a high level, the different machines may have vastly different architectures. If the application is

- written in a suitable high-level language, the same source code is used in any location.
T e A single uscr can access several different applications simultaneously. The user can switch

y contexts between these applications quickly and casily. Because of the ease with which

applications can be distributed (the previous point), they can be using the local workstation or

& remotc computing servers at the same time. )

:j: These last two aspects are the major influence of the distributed heterogencous environment on the VGTS.
. Timesharing is cffective when many users must share a computing resource; since current trends indicate that
b the uscr is quickly becoming the most important resource, we can extrapolate the philosophy that users are

. more important than machines, and have one uscr being served by several diffcrent computing resources.
X

- 3.2 The User Model

In the modern distributed system environment, we require access to a variety of applications, distributed
literally throughout the world. We would like to take advantage of the power of advanced workstations to

) provide a high-quality user interface to these resources. The ideal interface must take into account four
o fundamental principles:

C 1. The interface to application programs should be independent of particular physical devices or
- intervening nctworks.

>
2 2. The user should be allowed to perform multiple tasks simultancously.

- 3. The command interaction disciplinc should be consistent and natural.
. 4. Responsc to uscr interaction should be fast.

AN . L o . .

The first principlc has led to work in virtual terminals and dcvice-independent graphics packages; the
sccond to work in window systems. and the third to work in what has recently been called user interface

management systems [143). the most common cxamples of which are command languages. Without adhering
to the fourth principle, however, much of the other work is moot. Idcally, human uscrs should ncver have to
wait for the computers: the computers should wait for the user. In a distributed environment, in particular,

A_j the supporting network protocols cannot incur inordinate overhead.
»
"_:
o
- 3.2.1 The ldeal
& In view of these principles, consider the following user model.  When uscrs boot a workstation they L
- communicate with a view manager®, which allows uscrs to authenticate themselves and initiate onc or more
s activitics. "The activitics may run local to the workstation or remote. ‘They may be written with the particular
k- workstation in mind, or run in “terminal emulation™ mode. They may require 170 modatitics other than

oy traditional one-dimensional text; graphics or audio, for example,

Each activity may be associated with one or more separate, device-independent virtual terminals (V). A

_:" V1" may be created by the user or by the activity itself. Each V'I"may be used to emulate a different type of
rcal terminal, for cxample, a page-mode V1100 or a 3-1> graphics terminal. ‘Thus, while consistency is
}_‘l: cncouraged, the uscr is still able to access all resources to which he previously had access.

4

:: 4Unfonun:|lcly many similar systems refer to this component as the window manger, even though this is incorrect with respect to most

tcrminology.
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When users wish to initiate a new activity, they must first create a new executive. The cxecutive acts as a
command interpreter from which desired activitics may be initiated. Users can create a new cxecutive, with
an associated VT, or terminate an existing activity and V1™ at any time, that is, totally asynchronous to any
other activitics. When a particular activity requires additional virtual terminals, it is free to create them.
These Vs will be deallocated when the activity terminates.

Virtual terminals are mapped to the screen when and where the user desires. In fact, multiple screens are
intentionally allowed by the architecture, since in many applications color or gray-scale is desired, but high
resolution color monitors are expensive. Thus a workstation may have, for example, one low resolution color
monitor and onac high resolution monochrome monitor. Each mapping of a V1" to the screen is termed a view.
When an activity creates a new VT, it prompts the user to specify the defanlt view interactively, or the view
manager cicates the view automatically, depending on user preference for screen layout.  Thereafter, users
may crcate as many additional views as they wish. They may manipulate views of the same VT independent
of all other views of that VI, for examplc, to pan or zoom the vicw.

The interaction discipline across V'I's (and hence activitics) is as consistent and natural as possible. The
mcchanisms for moving between Vs and reorganizing the screen are standardized in the view manager.
Standard cditing facilitics permit the user to copy text or graphics from onc VT to another. A standard
command interpreter cenforces consistent command interpretation  across applications. A varicty of
information presentation facilitics arc provided to allow the user to view and manipulate data as desired. In
fact, different representations of the same data should be viewable with different formats, such as bar charts
of data containced in columns of numbers.

Ultimatcly, the exccutive mentioned above could cvolve into an intelligent agent that manages the user’s
distributcd resources in much the same way a traditional command language interpreter manages a single
system’s resources [78] . Then and only then would the user be totally unawarce of where the activitics are
actually being cxecuted - local to the workstation, on remote hosts, or distributed dynamically between some
combination of workstations and hosts.

3.2.2 Reality

This thesis focuses on virtual terminal management issuces, with particular emphasis on distributed graphics.
The resulting workstation software will be referred to as the Virtual Graphics ‘T'erminal Service (VGTS).
Below we will consistentiy use the term virtual graphics terminal (VG'1) in place of virtual terminal to
distinguish it from morc traditional work in nctwork virtual terminals and window systems described in the
previous chapter. ‘The VGTS contains both a graphics package and a window system, as modulcs in the
implementation to be described in Chapter 4,

Although we have not solved all the problems of command interaction, simply in order to manipulate the
screen we have developed a reasonable command interface - for creating, destroying, and rearranging VG'Es;
managing cxccutives: zooming, ctc. In addition, many of the common command interaction techniqucs, such
azmenus and forms, require graphical support, which the VGITS is can provide. nshort, the VGI'S provides
the facilities necessary to experiment with a varicty of different command interfaces. ‘This distinction between
terminal management and command interfaces follows from previous work and is consistent with the recent
trend towards uscr interface management systcms [78, 143}, ‘The rest of this chapter describes the VG'I'S
architecture in detail.
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3.3 The Network Graphics Architecture

The VGTS, as the rest of the V-System, fits the classic object or server model of software
architecture [67, 155]: The world consists of a collection of resources accessible by clients and managed by
servers. We will use the term client to refer to any entity (a human uscr or program) requesting access to a
resource. We will use the tenm wuser to refer exclusively to humans. Architecturally, we make few assumptions
as to how servers are implemented - as monitors or processes, for example. ‘The current implementation is in
the form of the message-based V-System, where servers are, in fact, processes.

For the purpose of terminal interaction, the principal resource is the workstation, the server is the VGTS,
and clicnts consist of the user and application programs. Figure 3-3 presents the interrclationships among
these components.  Following the traditional virtual terminal modcl, applications communicate with the
VGTS via the terminal-independent virtual graphics terminal protocol (VGTP). and with host software in
whatever way nccessary. ‘The VGTS communicates with the hardware via the terminal-dependent real
terminal protocol (RTP). ‘Thus, the VG'TS provides a protocol translation service between VG'I'P and R'IP.
Alternativcly, the VGTP defines the interface or semantics of the VGTS.

Application

- Workstation &Mual Graphics
o Terminal Protocol
-
P

o Real Terminal

- < h VGTS ——1 appiication

Protocol

s vaTP
N | [
ASN sssssssNENsERE vere
_-\' NN B EENEEBNENNENEN]
_:1 sesEBEEREROEREERS

o~ Application
o l

e User Other Services

T

f l:j Figure 3-3: High-level VG'I'S architecture

::j:: In terms of the 1SO Reference Maodel for computer networking [163], the VGTP is a presentation level

hd protocol. Naturalty, when used across a network, the VG'TP inust be encapsulated in appropriate session and i

- transport protocols. We refer to the former as the network graphics protocol (NGP), described in Section 3.5. ,
_":-j In terms of traditional graphics terminology, the VG TP is the graphics language and the VGTS implements ;
" the graphics package. ‘Together, they offer similar functionality to a number of cxisting graphics systems, '
o including thosc conforming to the 1SO standard Graphical Kernel System (GKS) [64] and the proposed Core

= standard ]147] as discussed in chapter 2. ‘The VG'T'P bears an even greater rescmblance to the proposed PGS

Bt standard [4). which was developed at approximately the same time. ‘The R'TP, on the other hand, could casily

: be the proposed ANS! Virtual Device Interface (VDI)[122] or the North American Presentation Level
. Protocol Syntax (NAPLPS) [6].
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3.4 The Virtual Graphics Terminal Protocol

The VGTS has two very different protocol interfaces: onc to the uscr and one to the clicnt application
program. First we will discuss in detail the protocol used between the VGI'S and its clients, referred to as the
VGTP in Figure 3-3. Instcad of standardizing on a byte-strcam or procedural interface, the VGTP was first
specificd as kinds of objects and a sct of operations on those objects. ‘This section describes these abstract
opcrations, and the next chapter discusses how the operations are actually implemented. Figure 3-4 illustrates
the relationships between the objects discussed in this scction. The next chapter will contain a concrete
example in Figure 4-2 to further cxplain these concepts.

Application Application
SDF
item: Symbol item: Symbol
ltem: Primilive Itemn: Primitive
item: Calt item: Primitive
item: Primitive Item: Primitive
VGT VGT
Client Client
Y {
View View View
Viewport Viewport Viewport
Depth Depth Depth
Window Window Window

Y Y Y

Figure 3-4: Relationship of SDIs, VGT's, and Vicws

User

The VGTS provides two basic types of structures: structured display fites (SDIF) and virtual graphics
terminals.  very graphical object is defined within a specific SDIS; thus, an SDIF represents an object
definition space. In order to view an object, it is necessary. first, o associate the object’s SOV definition with
a VG'I' (by the program) and, sccond, to zpecify a mapping of the VGT to the screen (by the user).

3.4.1 SDFs and their Manipulation

An SDI consists of a collection of irems. ‘The items can be cither primitives, or grouped into symbols, which
can in turn be contained in instances of other symbols, o any desired depth. ‘The SDI forms a directed
acyclic graph (DAG), with items as nodes of the DAG. Abstractly, symbol definition nodes have arcs to all
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¥
7%
,:":. their component items. Symbol call nodes have arcs to the symbol dcfinition node, and primitive items
e correspond to Icaf nodes.
ot An SDF is similar to a segment network in PHIGS, whilc an item is cquivalent to an element [4]. An SDF
..j".\, may also be thought of as a symbol system [56]. Items arc named by identificrs chosen by the application, are
‘f.;}-:r: typed. and have type-dependent attributes. The ranges of these identificrs and attributes will be discussed in
D Section 4.3. ltem types include: '
v o line
o o (fillcd) rectangle
0, - o (filled) pelygon
An; ® bi(map
o, o text (in arbitrary fonts)
sy o (filled) spline
hihy o symbol definition
o symbol call
'.:,r All items arc defined within a 2 dimensional integer world coordinate space. Translation is the only modeling
ot transformation permitted on “called” symbols. All other transformations, such as rotation or projection from
,-;-; higher dimensions, are presently handled by the application program. Attributcs are specified as indices into
' a* type-specific attribute tables similar to the bundled attributes of GKS. However, these attribute tables are
t» shared by all VG'I's and managed by the VG'I'S in its role as mediator between simultancous applications. In
Y contrast, GKS allows the single application to control the bundle tables. VGTS attributes are specified (at
N o least indircctly) on cach item, not inhcrited from calling symbols, as they are in PinGs, for example, or sct by
3898 modecs.
Y
" A client can create and dclete structured display files, symbols, or items. It may cdit symbols, and obtain or
: change the propertics of an item. The following functions are provided to manipulate the SDF:
: é-\." CreateSDF () =) sdf ‘
2 :_ Crcatc a structured display file, and return its identifier in sdf. This must be donce before any symbols
v arc defined.
4 ...
) DeleteSDF (sdf)
‘v“ » Return all the items defined in the given sdf'to free storage.
"::‘f:- DefineSymbol (sdf, item, name)
.T_-r_.:' Enter a symbol into the symbol table, and open it for editing. The sdf'is onc returned from a previous
2;,}; CreateSDF call. item is an application-specific integer identificr for the symbol and name is an optional
honn string naine. :
~." EndSymbol (sdf; item, vgt)
e Closc symbol ifem in sdf'so no more items can be changed, and causc the vg? to be redrawn to reflect the
;::‘f_\ new sdf. Called at the end of a list of items defining a symbol, started with CreateSymbol or
2-3 EditSymbol,
=, :.‘. EditSymbol (sdf; item)
b0l Opcn cxisting symbol item in sdf for modification. 'This has the effect of calling DefineSymbol and
X :0 . inscrting all the alrcady cxisting cntrics to the definitions list. ‘The editing process is ended in the same
:...-..:u way as the initial definition process: a call to EndSymbol.
B )
e X ¥ DeleteSymbol (sdf, item)
Yl Delete the definition of symbol item from sdf. Any dangling instances of this symbol, created by
s AddCall, will remain, but will contain nothing.
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AddCall (sdf, item, offset, calledSymbol)
Add an instance of calledSymbol to the currently open symbol in the sdf. The instance is given the
name item. The called symbol’s origin will be placed at offser in the calling symbol’s coordinate spacc; it
is not windowed or transformed in any other way. This is cquivalent to a move call unit in Sproull and
‘Thomas's structured format protocol [126). or an Execute call in NGS, as opposed to a Copy call. 'That
is. changing the symbol definition changes all instances. This is more like a subroutinc call than a macro
cxpansion.

Addltem (sdf, item, extent, type, atiributes, typeData)
Add an item to the currently open symbol in the sdf. giving it the name item. extent specifics the
bounding box of the item in its coordinate space. fype and atrribute determinc the type and attributes
respectively.  typeData contains any other data nccdcd to define the item, such as the contro! points for
a splinc item or the text string for a text item.

Deleteltem (sdf; item)
Delete iten from the currently open symbol definition in sdft

Inguireltem (sdf. item) =D extent, type. attributes, (vpeData
Return the parameters for item in sdf.

InguireCall (sdf, item) = calledSymbol
Return the item name, calledSymbol, of the symbol called by the item in sdf.

Changeltem (sdf. item, extent, type, aitributes, typeData)
Change the parameters of an alrcady cxisting izem in sdf. This is ¢quivalent to deleting an item and then
reinserting it, so the item must be part of the open symbol.

3.4.2 VGT and View Managément

Once the VGTS client has defined some graphical objects, the client or the user nceds: to provide
information on how the objccts should appear. The VGTS lets a user sce objects in any VG'I" anywhere on
the screen in views. Each view has a zooin factor, a window on the world coordinates of the VG'T, and screen
coordinates which determine its vicwport. 'Thus, a view defines a particular viewing transformation directly
from world to device coordinate spacc.  No intermediate transformations, such as normalized device
coordinates, arc visible to the clicnt.

Although the client can create default views, the uscr can change them with the view manager, and create
and destroy more of them. Each VG'I' can exist in zero or more views, but cach view has cxactly one VGT
associated with it.  Each VG is associated with at most onc SDF, but cach SDF may be associated with
several VG'T's. Symbol definitions arc shared between VG'Ts that have the same SDF. "Thus one VGT can
display at its top level a symbol that appears as a called instance at a lower level in some other symbol in
another VGT.

lcunctions for clients’ manipulation of VG'I's and views include:

CreateVGT (1ype. name. sdf, item) =D vgt
Crcate a VG of type 1ype and rcturn its identifier in vgr. name is a client-specified symbolic name for
the VG that may be uscd later to sclect that VGT for input. item in sdf'is placed as the top-level item
in the VGT'; it can be zero to indicate an initially blank VG'I'. The type can be some combination of
Text, Graphics, and Zoomable.

DestroyVGT (vgt)
Destroy the given vgrand all the associated views,
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DefaultView (vg1, width, height, wXniin, wYmin, zoom, showGrid) = width, height

Create a view of the given display, with the uscr determining the position on the screen with the
A graphical input device. width and height give the initial sizc of the view; non-positive valucs indicate
that the uscr should determinge the size dynamically, in which case the selected values are returned.
wXmin and wYmin arc the world coordinates to map to the Ieft bottom corner of the viewport; the

Cw—
o AV

‘ -‘I’ amount of the world actually viewed depends on the size of the viewport and the zoom factor. ‘The
- zoom factor is the power of two to multiply world coordinates to get screen coordinates; it may be
W negative, to denote that a view is zoomed out. Views arc not otherwise transformed. If showGrid is set,
. a grid of points is displayed in thc viewport.
[\
1" To display a ncw graphical object in a VGT after the VGT is created, cither the old top symbol can be
[ cdited, or a new symbol can be defined and the following function called:
L)
L . Displayltem (vgt, sdf; item)
N Change the top-level item in vgt to be item in sdf. The new item is displayed in cvery view of the VGT.
“.; DefaultView cxccutes an implicit Displayltem aftcr crcating the view. EndSymbol may also causc output to
“ appcar after (re)defining a symbol, although the VG'I'S redraws only the part of the vicw that has changed in
-.. this casc. 'The VGTS implementation is also free to perform other optimizations, such as only drawing the
' additional items if the only changes before an EndSymbol are adding top-level primitives. Using these
functions, the VGTS clicnt can achicve the effect of deferral modes for graphical output, including:

baich Construct the graphical object in its entircty and rhen display it, by executing a
.:.( DefineSymbol or EditSymbol, many AddItem calls, followed by an EndSymbol call. This
:-f corresponds to crcating an invisible scgment and making it visible, or using the A¢ Some

- Time deferral mode in GKS.

incremental  Construct and display the object “on the fly”, that is, display cach primitive item (cach

veetor, for example) as it is added to the object, by repeatedly exccuting an EditSymbol,
. AddIltem, EndSymbol scquence. This corresponds to creating a visible scgment, using the As
. Soon As Pussible deferral mode in GKS.

The latter approach may achicve better response, and is the normal mode of opcration for most traditional
graphics systems. However, as results will show, the former method usually achicves higher throughput, and
is the norm for programs using the VG'I'S.

.
"
-~ 3.4.3 Input Event Management
-" Since the VG'I'S was designed to support multiple simultancous clients, it must decide which client reccives
- which input cvents. ‘T'his is called input demultiplexing. and naturally occurs on a VG'I' basis. "The following
. functions arc available for graphical input:
::. GetEvent (vt eventMask) =D eventDescriptor
ol Wait for an input cvent to occur with respect to the indicated vge and return a variant record in
_ eventDescriptor that describes the event. ‘The record will contain the type of the event and the reievant

- type-dependent information.  eventMask specifics the acceptable types of input cvents: keyboard or
mousc. The mouse cvents subsume button and locator devices of GKS, returning the buttons presscd
and the location in virtual coordinates within the vgt. ‘The first cvent in any of the indicated classes to
occur is returned.

FindSelectedObject (eventDescriptor, searchType) =D item, edgeSet

L%

* Given an cvent descriptor as returned by GetEvent, return the item of the smallest object near the
e cvent, and a sct of (1.cft, Right, Top. Bottom) cdges which the cvent was near.
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N
] =,
‘g_w GetGraphicsStatus (vgt) = status
- Return the status of the graphical input device with respect to the indicated vgr including buttons
pressed and location. As a side cffect, the event queuc is cleared of any outstanding graphical events,
~ PopUp (menu) =) selection
;‘-.‘.: Display a menu of choices at the cursor position. consisting of an array of strings, to the user. When the
M. uscr selects a particular item, rctuen the array index in selection. ‘This is similar to the GKS choice
= .
device.

GetEvent and GetGraphicsStatus together provide the functionality of the GKS input modes. The VGTS
maintains an event queue for cach VGT'; all keyboard and mouse events related to that VG'I are queuced in the
samc quence, in First-In-First-Out order. "T'hus the evenr mode of GKS is supported for both the keyboard
and mouse through GetEvent. Pick device functionality is obtained from the FindSelectedObject function,
which is similar to request mode of GKS. GetGraphicsStatus allows the mousc to opcerate in sample mode.
Sampling of the keyboard is not supported, since such a capability would be quite device dependent.

Keyboard input is always associated with some VGT group. Fach VG'T belongs to exactly onc group, and a
group typically corresponds to an activity (although an activity can create multiple groups). The groups are
identificd by theic master, which reccives keyboard input when the group is sclected through the user
interface. The next scction describes the textual output interface, provided so the simple symmetric model of
standard terminals can be used for echoing keyboard input.

3.4.4 Text Terminal Emulation

The VGTS supports a text VGT modc optimized for page-mode terminal emulation.  Specifically, an
application may treat a VGT as a standard ANsI terminat [1]. such as a DEC V1-100. Such an application
nced not know anything about the graphical facilitics of the VGTP, and may use the ANSI terminal protocol
to commimicate with the VGTS, including escape sequences for cursor control. Qutput to the VGT is stored
in a pad|77], which is a symbol within an SDF. ‘The symbol consists of a lincar array of simplc text items,
cach of vhich represents one line.

Note that the terminal cmulation output interface is of a different nature from (and thercfore,
unfortunately, incompatible with) the graphics interface as discussed above. However, this does not prevent a
mixcd text and graphics application. Onc particular type of graphics item is text, permitting a client to casily 4
integrate text and graphics within a graphics VG'T. ‘The terminal emulator interface is provided to optimize
performance for a typical special case.

The VGTS architecture provides several advanced features for the support of keyboard input processing.
. Applications can operate in “raw’ modec, or sclectively enable any of the following features:

l.ocal Echo This allows instant response to keyboard input, providing uscful feedback to users of
potentially loaded timesharing systems.

Linc Editing Programs that interact on a linc-by-line basis, such as the executive, can cause lines to be
buffered (and usually cchoced) inside the VGT'S.  Sophisticated cditing commands arc
available on the linc buffer, and the exceutive (for example) can “stufl™ previous command
lines into the line buffer, in conjunction with its history mechanism.

Paged Output When this mode is in cffect, the VGTS will black output requests larger than onc page. A
message is displayed in the banner, and the user types a command to unblock when ready.

Graphics Escapes Inside a pad, when connected o some remote hosts through a TELNEL program, graphical
input cvents can send cscape scquences back to the application. ‘This allows many uscful
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i
o, programs that deal with conventional terminals to be simply extended to take advantage of
a, graphical input capability without major redesigns of the applications. For example, an
- EMACS [129] library can be loaded to bind these character strings to commands that
don position the text cursor, sct the EMACS mark, delcte and insert text.
Ly
f'_ By dcfault, keyboard input is line-buffered and cchoed by the VGTS, with the powerful line-editor built in.
,Q§-: Support for text editing by a pointing device could be provided. transparently to applications. This has been
N partially implemented in onc user’s custom version of the VGTS.
o .
T 3.5 The VGTS Client Protocols
_’::_ The VG'IP is constant over all applications, but allows for a wide variety of bindings to lower-level
" protocols. Somc applications have no knowledge of the VGTP and some applications arc running on
machines that do not support the interprocess communication mechanisms underlying the VGTP. Whenever
Ty the application is running remotcely, the VGTP must be ¢cncapsulated within an appropriate network transport
_'.';t protocol. The following situations arisc (scc Figure 3-5, in which cach inter-machine arc is labeled with an
'. : cxample (presentation protocol, transport protocol) pair):
d'::
‘ , VAX
. SUN ) VLSI Layout
2 Compiler Editor
-.‘_j-
s B c
ALY
e VGTP vGTP
“ ‘_\
s IKP RTP/BSP
J
0 D’
S DEC-20
3 Local vax
Y Text Editor Nustrator Distributed
- . Game
-‘..-.
S @ Teinet Custom O
e E
= TCcP NGP
b
-
:, Figure 3-5:  Possible clicnts of the VGTS
BN
Y e Application A4 runs on the workstation and communicates via V kernel messages. Current
» cxamples include text editors, document illustrators, and design aids.
- e Application B and the VGTS run on two scparate machines that support network- -transparcnt
N . interprocess communication, such as the V-System inter-kernel protocol (IKP), B communicates
e with the VG'T'S via the VGTP, as in the casc of a application A.
b
&
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:'lj e Application C runs on a machinc that does not support nctwork-transparent IPC, but docs j
L support a traditional nctwork architecture. In addition, a VGTP interface package is available that :
>3 cncapsulates the VG'I'P within the appropriate transport protocol. Similarly, a local agent for the !
application, C., is created on the workstation to decapsulate the VG'TP. "Thus, the application may
e still be written in terms of the VGT'P and neither it nor the VGT'S have any knowledge that the
S other is remote. Our VLSI layout cditor, for cxample, can be run in this fashion under ;
- VAX/UNIX. ]
- o Application D has no knowledge of the VG'TS or the VGTP; it wishes to regard the workstation as ]
. just another terminal.  The local agent, D’ is “user TELNET” and performs the appropriate |
' translations between TELNET and VGTP.
&
L e Application E is distributed between the workstation and onc or more other machines. The local
B agent. E° is responsible for communicating between the distributed parts of the application and
" the VGTS. It must perform the appropriate sct of protocol conversions indicated above. In
A addition, it may wish to perform application-specific functions, such as high-tevel caching. In that
casc. the protocol used to communicate with the remote applications may require more than
simplc transport scrvice.
7 All applications but 4 usc a nctwork transport protocol, whether they realize it or not. Application B
'-'{ employs an interprocess communication protocol that has nothing to do with graphics per se. Application D
cmploys a protocol that in no way depends on knowledge of the VGTS and typically has nothing to do with
4 graphics: in order to run, an appropriate protocol-converter must run on the workstation.
‘f Applications Cand E, on the other hand, know all about the VGTS and are very intercsted in graphics. We
:; will refer to the protocol they employ as the nerwork graphics protocol (NGP). 'The NGP may be a simple
: encapsulation of the VG'I'P by an cxisting transport protocol, it may be a problem-oriented protocol {117], or
_- it may itsclf be a multi-level protocol. Application C, for cxample, may find a dircct encapsulation of the
VG'TP acceptable. Application E, however, may wish to maintain a replicated database (the main database
plus the cache), or may wish to trade reliability against cost. In these cascs, the NGP offers considerably more
- functionality than mcre cncapsulation/dccapsulation of the VGTP. In gencral, the VGTP and NGP
. correspond roughly to presentation and session layer protocols, respectively, in the ISO reference model {163).
N "The transport protocols used in the prototype implementation are discussed in Scction 4.3.5.
S 3.6 Summary and Implications of the Architecture
. "This chapter presented a high-level virtual graphics terminal protocol that is the key clement of the VGTS
[~ architecture. This protocol is used by applications to specify graphical objects with hicrarchical structure.
“ The use of standard protocols helps to provide device independence.  Any application program which uscs
. the standard protocol can be used with any implementation of the VG'T'S, without any modifications. More
N information about how this is achicved, and other details of the prototype implementation are given in the
y next chapter.  Chapter § discusses the rationale behind the design of both the architecture and the
[ implemcentation, including why he design facilitates distribution and concurrency.  As will be shown in the
f' Chapter 6, this protocol is successful in imiting both the frequency of communication between application

and VG'I'S and the amount of data transmitted at any onc time.
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— 4 —
An Implementation of the VGTS

The architecture described in the previous chapter is independent of any implementation.  Programs
developed for one implementation of the VG'I'S should be able to run with any other implementation, given
the existence of the appropriate transport protocols. In this chapter we will first describe the organization of
onc particular prototype implementation. This implementation actually adapts itself at run-time to scveral
different varictics of workstations, and many modules can be used on other very different workstations. The
techniques used in this implementation to update the screen are discussed, followed by the client interface,
and then the user interface.  Finally, an example application program is described:  a simple illustration
cditor.

4.1 General Organization

As noted in Scction 3.2, the VGTS is only onc component of the user interface software in the V-System.
‘The other components are:

e the view manager

o the oxcee server

o the exccutives

o the application library

The view manager provides the means by which users can create, destroy, and modify the screen layout, as
well as create new exccutives.  Exccutives represent instances of the same basic commaad interpreter, as
defined by the cxec server. To create a new exccutive, the user communicates with the view manager, which
communicates with the exce server. ‘The user may replace the cxec server at any time, cffeztively redefining
the exceutive command interpreters.  Logically, the view manager is another module that may be replaced.
Ultimately, however, these componcents employ the services of the VGT'S to communicate with the user.

In fact, the VG'I'S is mercly an instance of a terminal agent. Hence, the user may also replace the VG5 at
any time with simpler terminal agents, or other window systems.  This facility permits a programmer to
develop new graphics facilitics without having to constantly reboot his workstation.  On the other hand, it
provides the mechanism by which the same user interface management system can communicate with a
substantially “reduced” terminal agent such as the simple terminal server (STS), a subset of the VGTS
architecture which runs on a simplc text-only terminal [17].

4.1.1 VGTS Implementation Modules

At onc more level of detail, cach terminal agent is composed of multiple components.  In particular, the
VGTS implementation consists of the following modules:

master multiplexor  Handlces all client requests by dispatching to the appropriate routine in other modules.
Provides synchronization between all the possible clients, by receiving messages from
them. ‘The major part of the opcerating system interface is contained in this inodule.

escape interpreter  Monitors the incoming byte strcam for graphics commands and calls the SDF
manager to perform them.  Other characters are passed through to the terminal
cmulator. '

terminal cmulator  Interprets a byte strcam as if it were an ANSI standard terminal [1).  Printable
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Figure 4-1:  Process and module structurce of the VGTS

characters arc added to text objects, and control and escape codes are mapped into the
proper VGT'P operations.

Handles requests to create, destroy. and modify graphical objects within structured
display files. Maximum cxtents of symbols are maintained to help the redrawing
process. This is clectively the display file compiler[27, 56). Included is a hash table
manager to keep track of symbol definitions and item numbers.

Highest-level graphical output operations.  ‘The structured display filc is visited
recursively, with appropriate clipping for extents totally outside the arca being drawn.
This is cffectively the display processing unit.  In a higher-performance
implementation this module and the ones below it could be implemented in hardware.

The structured display file is visited, but instead of actually drawing the primitives, the
positions arc checked to match the cursor’s position. A list of possibly sclected objects
(under other optional constraints) is returned to the client.
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\q_
¥ | .
o cvent handler Handlcs the event queucs, line buffering, and the blocking and unblocking of clients
T waiting on cvents.
view manager Provides the user interface for screen management. Although this is logically a fairly
o scparate cntity from the lower-level functions of the VGTS, in the current
N implementation it is provided as a module which runs as a coroutine to the master
b multiplexor process.
view primitives Perform the view-changing operations. ‘These arc the operations invoked by the view
- manager, such as creating, deleting, and modifying views.
; display manager Low-level but possibly device-independent  operations, such as handling the
32 overfapping viewports.  Atthough this module docs not do any frame buffer
Y , opcrations dircctly, it uscs several device-dependent parameters, such as the size of the
oA screen in physical coordinates.  Also, some of thesc opcerations could be done in
hardware on higher-performance graphics devices.
g
._- drawing manager  Device-dependent graphics primitives called by the display manager. On the SUN
::j workstation, for example, these primitives manipulate the frame buffer. On other
[ lower-performance workstations this might be done by a scparate process to prevent
) "i the multiplexor process from blocking for long periods of time.
Ry input handlers Device-dependent modules for reading the keyboard and tracking the mouse. There
- is also a timer module to supply periodic messages to the multiplexor.
- The relationships between these modules arc illustrated in Figure 4-1. The general direction of control is
- indicated by the direction of the arrows. The higher level modules near the top of the figure call fower level
modules ncar the bottom.,
> 4.1.2 Team and Process Structure
N
The V-System provided three techniques for structuring softwarc:  modules, processes, and teams.
. Modulcs are groups of functions that communicate through function calls and global variables. The kernel
i manages independent concurrent processes, which communicate through messages or shared memory. Only
% processes on the same team share memory; scparaic tcams arce separate virtual address spaces. ‘The process
. structurc of the VGI'S is also illustrated in Figure 4-1, by the presence of the thick arrows. ‘The arrows are
) drawn in the dircction that messages are sent, from the sender to the recciver. The VG'I'S implementation
consists of four processes:
j' 1. The keyboard helper process reads from the kerncl console device and sends messages to the
i master multiplexor. :
5 2.'The mouse helper reads from the kernel mouse device and sends messages (o the master
multiplexor. 1
- 3.’The timer helper delays for . sct period and sends timing messages to the master multiplexor. !
- Scveral activities arc triggered by these messages, including a blanking of the screen after ten .
N minutes if no other messages have been received. !
[~ 4, 'The master multiplexor process synchronizes all frame buffer operations, and performs most of '
. the other functions, )
‘The low level interface to the console, mouse, and timer is implemented by the V kernel. Normal messages :
\ arc sent to a pscudo-process called the “device server’™ which will block until data is available. This blocking '
) 1
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b |
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r 42 PARTITIONING OF IF'UNCTION IN A DISTRIBUTED GRAPHICS SYSTEM
: ) necessitates the three extra helper processes for these devices. The main loop of the VGTS, like most servers
Wi in the V-System, consists of a Receive primitive followed by a switch on the type of request. The main
o process of the VGTS should never block for significant periods of time.

-(‘_

4.1.3 Module Sizes

The number of lines of source and the number of bytes for object code for cach of the modules is given in
Table 4-1. 'The “Others” line refers to lines of code in the header files, and bytes obtained from librarics.
Notc that about one third of the object code is obtained from libraries. Another interesting obscrvation on
o the relative sizes of modules is that the module that is largest in source and sccond largest in object code
' (spline and polygon functions) is very rarely used.

il o ~

Ol
.l v

Source Size Object Size

: Module (Lines) (Bytes)
Display 442 3475
) N Splines and Polygons 1498 10068
= SUN Drawing Manager 1423 8860
= Event Handler 1150 6540
3 SDF Interpreter 638 6540
g Escape Interpreter 594 5164
& Input Handlers 427 2416
S View Manager 1137 9920
o Hit Detection 983 6024
- Master Multiplexor 1045 8212
L "I'erminal Emulator 896 6000
SOY Manager 1349 14240
- Vicw Primitives 1209 8676
Others 425 51059
J: ’ Total 13283 140654
.o Table 4-1: VGTS implementation module sizes
J
o 4.1.4 Adaptive Techniques

The VGTS uscs several techniques to adapt to its environment.  First, scveral link-time versions are
available. In the full configuration, the basic V-System services (such as the excc server, context prefix server,
tcam scrver, cxception scrver, ctc.), are provided by one tcam, which loads another tcam at initialization
consisting of the VG'TI'S and a default view manager. The user can then issue a command to replace the entire

y R I

DA
.
Bi i

\': VGTS and view manager at run-time. Since this capability is rarcly used cxcept by some VG'U'S developers,
: another configuration has the VGTS linked together with the basic services into a single tcam. The two-tcam
.\_, version tikes longer o foad, and occupies at lcast SOK bytes more of memory and another tcam descriptor,
o Finally, for systems that arc short of memory, a reduced function VG'I'S is available with no splines, polygons,
¥ or font loading facilitics.

} The low-level VGTS device driver has to deal with subtle differences among the many versions of SUN

workstation hardwarc that have cvolved over the years. Somie differences arc handled by the V kernel device
. scrver, which provides virtual keyboard and mousce devices. Other parameters, such as the exact screen size
_*Q' (which varics from 796 lincs by 1024 pixcls to 1024 lincs by 800 pixcls) and the virtual address of the frame
! buficr, are detenmined at run-time with the aid of a kernel workstation query operation.

More changes were required to support an implementation of the VG'I'S for a later model of the SUN
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::: workstation, called the SUN-2. Initially the single installed VG TS would query the kerncl on start-up to d
j“{ determine the type of frame buffer and set a variable. This variable was tested before each primitive to 3

determine which low-level graphics function to call. Although the run-time CPU overhead was acceptable,
the memory usage of the combined version cventually prompted the split into scparate versions for the

{] SUN-1 and SUN-2 framc buffers. Interestingly, the mere act of identifying device dependencics that had
crept into modules that were previously thought to be device dependent, resulted in cleaning up the
,_: implementation and marginally decreased the size of the original SUN-1 implementation.

l Additional techniques could be used for adaptation in fitture implementations of the VGTS. For example,
# if the V-System implemented virtual memory then the rarely-used modules could be page-faulted into
- physical memory only when actually needed. Dynamic linking could also be used to reduce the minimum
S memory requirements, at the expense of slightly more complicated inter-module linkages. Dynamic linking
- would also require more complicated debugging tools, and possibly introduce reliability problems.

4.2 Screen Updating

y This section discusses the techniques used for displaying objects, the cnd result of VGTS operations, In
- contrast to many systems, the VG'I'S provides centralized rather than distributed control of screen updating.
3 The next chapter, and in particular Scction 5.4, will discuss the rationale behind this decision in greater detail,
(] There arc a fixed sct of graphical primitives, exccuted under the control of the VG'T'S SDF interpreter, display
manager. and drawing manager, the lowest level modules in Figure 4-1. "T'his centralized control climinates
N any possibility of applications interfering with cach other, In fact, operations on the SUN frame buffer !
- cannot be interrupted and restarted, so soime kind of synchronization is necessary. Morcover, centralized 1
. control is the only rcasonable approach for distributed applications. "The user methods of object oriented )
window systems discussed in Chapter 2 rely on shared memory, which is not typically available in a
distributed environment,

:: 4.2.1 Implementing Overlapping Viewports

Originally. vicwports were restricted to lic entirely on the sereen and to not overlap. However, this proved
to be inadequate, since screen space quickly filled up, and viewport manipulation commands often failed.

" The current implementation uses a novel scheme of dividing cach viewport into visible non-overlapping
X rectangles (called subviewports) whenever the screen layout changes.  ‘The viewports are redrawn by
‘o interpreting the structured display file in cach of the subviewports. This has the advantage of no speed
5 penalty for updating views that arc not obscurcd (the normal case). Views which have non-rectangular visible
; portions may take longer to update for complicated SDFs, but almost always the actual drawing time is the

dominating factor. which is proportional to the arca being redrawn and independent of the shape of the
-, region. T'he resulting scheme is clean and simple.

Once major advantage over systems that maintain obscured bitmaps (such as Apollo Domain [8], Blit
ayers [105]. and Spice Canvas [13]) is that no extra memory is required 1o store those obscured bitmaps. ‘The
SDIF can represent extremely large objects in modest amounts of memory.  As an example, consider the two
overlapping viewports in Figure 4-2. 'The SDIF data structures take up only a few hundred bytes, while the
bitmap could need many thousands of bytes. View number 1 lics on top, and is entircly on the screen, so it
has only onc subviewport, number 1. View number 2 is partially obscured, so it has two rectangular
subvicwports. numbers 2 and 3. ‘The “banners™ or labels on the top of cach view arc implemented as
additional subviewports, cach displaying a single item: a string name, VG'I" number, optional view number
and zoom factor, and a string controlled by the application.

2 Pl AP M

K Another advantage of updating from the SDI- instead of from a bitmap, is that it is often actually faster to
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Figure 4-2: Examplc of item naming

redraw the picture from the SDF than to restore the bitmap, assuming that the bottleneck of graphics is the
frame buffer update bandwidth. For example, a picture composed of vectors usually has a low density of
pixcls touched by the vectors,  For scrolling text, our expericncee has been that it is significantly faster to
redraw a single character on the SUN-1 than it is to scroll it by moving the bitmap. ‘This is because moving
the bitmap uches cach bit of the frame buffer twice (one read and one write), while redrawing touches it
anly once. The source for the redrawn character is matn CPU memory, which is accessed more quickly than
frune buffer memory.  Unfortunately, the SUN-2 frame buffer was designed to optimize large raster
opcrations used in the raster-oriented software marketed by SUN Microsystems, instcad of the many small
opcerations donc by the VG'I'S. In other words, on the SUN-1 frame buffer the bottleneck was the number of
bits per second that could be sent over the 170 bus, while on the SUN-2 the bottlencck is the number of raster
operations per sccond. ‘F'he result is that the SUN-2 frame buffer is slower than the SUN-1 for all VG1S
drawing opcrations.
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4.2.2 Zooming and Expansion

The VGTS provides support for zooming and cxpansion depth that is independent of its clients. Zooming
consists of redrawing the SDF with larger objects. not replicating pixcls. Expansion depth, onc of the
attributes of cach view, indicates how far down in the SDF to go when displaying a symbol. If the cxpansion
depth is less than the SDF tree height, an outlined box will be displayed at the appropriate point in place of
the symbol. Depending on the size of the box, the text nane of the symbol may alwo be displayed. Views may
be zoomed and expanded independently such that a user may view an entire symbol in one view, for example,
while simultancously viewing a picce of the symbol in a zoomed-in view.,

4.3 Client Interface

Before the techniques described in the last scction can be uscd to display objects, the objects must be
defined by some client application program. ‘The abstract objects and opcrations were discussed in the
previous chapter, Scction 3.4. The details of the C language binding for this interface arce discussed in the
V-System Reference Manual, in the chapter on the graphics library functions [17].  This scction discusses
some important design choices taken in the prototype VG'T'S implementation regarding the client interface.

4.3.1 Item Naming

Items within an SDF arc named with 16 bit identificrs chosen by the application. It is assumed that the
application will maintain some highcr-level data structures, along with the appropriatc mapping to these
L internal item names. The item names are global to each SDI-, but applications may also have scveral SDFs
. for different name spaces. ftem identifiers are referenced via a hash table, so there are no constraints on their
valucs [73]. liems that will never be referenced can be given item number zero, and are never introduced into
the hash table. In practice. only a fcw “interesting™ items arc actually given non-zero numbers,  Item
numbers can refer to both definitions of symbols and their instances. Symbols are also given string namcs,
but these strings arc only used for disambiguation during hit testing, or for displaying symbols at the
cxpansion depth. String names of symbols arc not related to item numbers.

L,
> N
e,

For cxample, a picture of a bicycle might define a symbol for a wheel. The item number of the top-level
“bike™ symbol could be 1, with 2 and 3 referring o other parts of the symbol. “The definition of the wheel
symbol is given item number 4. There may then be two instances (calls) of item number 4, which could be
given item numbers 5 and 6. ‘The individual spokes of the wheel arc components of symbol number 4, but are

Ty
e e

X all given item number 0, since we will never want to refer to any of them individually, If it is desired to delete

T or move any individual spoke, then cach of these items may also be given numbers. Figurc 4-2 on page 44
, illustrates this cxample.

3

. 4.3.2 Representing SDF Items

s

oy Scction 3.4 introduced some of the kinds of item types used in the VGT'S. The implementation uscs a

compact linked list of display records to represent these items internally. Fach item within an SDF has the
- following parameters:

- Item A 16 bit unique (within the SDF) identificr for this object, or zcro. This identifier is
- referenced by the clicnt when performing cditing operations.

Type Onc of the predefined types described below; cither a primitive type or one to indicate
structurc. Currcntly cight bits arc allocated to this.
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TypcData Eight bits of type-dependent information, such as the stipple pattern index for a filled

Xmin

Xmax
Ymin
Ymax

Pointer

Sibling

rectangle. Most attributes are stored here, such as the font index for general text.

Minimum X coordinate of the extent. All coordinates are in “world” coordinates, stored as
signed 16 bit signed intcgers.

Maximum X coordinate of the extent.
Minimum Y coordinate of the extent.
Maximum Y coordinatc of the extent.

Depending on the type, this is cither a pointer to some data such as an ASCII text string, or
for symbol calls, a pointer to the called symbol.

All the component items within a symbol are linked together via this chain. This is a
circular chain, as illustrated in Figure 4-2. Nomally this relationship should not be visible
to the clicnt, unlcss the client wants to step through a symbol definition in order.

Some of the meanings of the above ficlds depend on the type of the item. The following are the types of
items that occur in structured display file records in the prototype implementation:

Filled Rectangle A rectangle filled with some texture. The TypeData ficld specifies the stipple pattern, or

Horizontal Line
Vertical L.ine
Point

Simple Text

General Line

Outline

Text

Raster

Spline

Filled Polygon

color on the [RIS system.

Horizontal linc from (Xmin,Ymin) to (Xmax,Ymin). Ymax is ignored.
Vertical line from (Xmin,Ymin) to (Xmin,Ymax). Xmax is ignored.

A point, which usually appears as a 2 by 2 pixel square at (Xmin,Ymin).

A simplc text string, with (Xmin,Ymin) as its lower left corner. ‘This produces text in a
singlc fixed-width font that can be drawn very quickly. 'The values of Xmax and Ymax
need not surround the text, but they are used as aids for redrawing, so should correspond
roughly to the real extent.

A generalized line, from (Xmin,Ymin) to (Xmax,Ymax). Note that Xmin ctc. arc slightly
mislcading namcs. ‘The SDF manager actually sorts the endpoints and calculates the extent
correctly.

Outlince for a sclected symbol. Xmin, Xmax, Ymin and Ymax give the box for the outline.
The TypeData field specifics bits to sclect cach of the cdges: Lefiliddge, RightEdge,
TopEdge or BottomEdge.

A string of general text, with a lower Ieft corner at (Xmin,Ymin). ‘The T'ypelata ficld
specifics the font number. Xmax is recalculated from the width information for the font,

A gencral raster bitinap with a lower lefl corner at (Xmin, Ymin), and upper right corner at
(Xmax,Ymax). The TypeData ficld determincs if the raster is writien with ones as black or
whitc. The painter ficld points to the actual bitmap, in 16 bit-wide swaths,

A splinc object, optionally fitled with a specificd pattern. The pointer ficld points to a
SPLINE structure.

A list of points which defines a polygon that can be optionally filled with a specified
pattern.
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Arcs A list of points defining a serics of circular arcs. Although arcs can be very closely
approximated by splings, this provides a simpler interface and faster implementation,

There arc a few other types that arc not visible to the uscr. For example, symbol definitions and calls are
represented as items with most of the same attributes.

4.3.3 Interface to V-System Protocols

The VG'TS implements a subset of the standard V 1/0 protocol [33]. Thus simple applications can write to
standard output and read from standard input, with no changes required when exccuting under the VG'TS,
under the simple terminal server, or with input or output redirected to any other file. Pads arce created by the
standard request to create a file instance, and destroyed by the standard request to releasc a file instance.

The VGTS also implements some of the operations in the V distributed naming protocol [34]. When the
standard dircctory listing program is uscd to list the dircctory of the context named vgts, information about
the currently defined virtual terminals will be printed. Thus cach virtual terminal is a named V 1/0 object.

4.3.4 Binding the VGTP to a Byte Stream

The functions described in scction 3.4 arc all encapsulated in escape sequences to form a byte strcam using
a very simplc protocol. Each call causcs a special flag character to be sent (the ASCII character called US, octal
037) followed by a onc-byte code indicating the function number. This is followed by cach of the arguments
to the function, transmitted with the high-order byte first in cach argument. Any return values are sent with
the same cscape character followed by the bytes of the returned value, high-order byte first. Most parameters
arc sixteen bit unsigned integers, requiring two bytes for each value.

This results in a very small number of bytes for common opcerations. As we shall sce in the next chapter,
this makcs the protocol fairly insensitive to network speeds. A more ambitious project would have used an
automatic “remote procedure call” gencrator [102), but the manual method was sufficient for this project,
since the functional interface did not change very often. An automatic RPC mechanism should not affect the
performance of applications, and in fact should be entircly transparent,

4.3.5 Network Transport Protocols

The cencapsulation of the VG'I'P within transport protocols is illustrated in Figure 4-3. Dashed lincs
separate library packages, solid lines scparate programs, and arrows indicate network protocols.  All
interaction to the VGTS is through the V Input/Output protocol (VIQ), which provides a byte strcam of data
in terms of V messages. ‘The interp module decodes graphical operations out of this byte strcam, providing
the server side of the remote procedure call facility. "Yhe terminal emulator is also provided as a simple VIO
byte stream interfuce. Clients use cither the VIO stream package, or the UNIX Stdio package. ‘The stubs
madule encodes graphical information on the standard output channel and decodes responses from standard
mput,

For distributed applications, onc of three network transport protocols can be used’:

RV Y 5N

1. Pup TrLNET [19]

5nolh Tri NET protocols are used as “transport” by remote VGTS clicnts, even though they are usually treated as presentation-level in
the 1SO hicrarchy. 'The distinction is in name only,
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N

2. Internct TELNET [107)

L)
:|::'. 3. V-System Inter-Kernel Protocol [31]
e
B 1 . . . i oL .
:0:: These are standard, general-purpose transport protocols, with nothing specific in their design for distributed

i
K

graphics. In particular, the Internet Protocol allows usc of any of the hundreds of computing resources on the

had ARPA Internet with no modifications to their operating systems.
J
-
)_?, 4.4 The View Manager Interface
o
s "The view manager provides the visible interface between a person using the V-System and the VGTS. ‘This
2 is very different from the programmer’s interface to the VG'I'S which was described abstractly in Section 3.4,
- and discussed in the previous section.  Programs create SDI's and objects within them, and associate these
:' objects with Virtual Graphics Terminals (VGT's). ‘Through the view manager, the user maps these VG'I's onto
:{: a physical screen, and manipulates the resulting views. 'The view manager also provides the ability to manage
“-j? cxccutives, through an interface to the exec server. A similar component in other systems is usually called the
\ window manager or screen manager. ‘This scetion describes the default view manager in the prototype VG'I'S
implementation.
o
e
\.:_‘ 4.4.1 VGTS Conventions
< On the physical screen, virtual terminals appcear as white overlapping rectangles with a black border and a
p label ncar the top edge called the banner. ‘There is at most onc virtual terminal (usually a pad, or text-only
7 :j: virtual terminal) that is receiving input from the keyboard, along with possibly other virtual graphics
o terminals receiving graphical input. These input sclections arce indicated by a flashing box (the text cursor) in
-
._:'.
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the text virtual terminal, and a black label on all the vicws that are accepting input. Note that all virtual
terminals arc always active in the sense that any application may run or change the display in any virtual
terminal at any time independent of thesc sclections; selections only apply to input.

There arc a few conventions for using the mouse with the VGTS. A click consists of pressing any number
of buttons down and rcleasing them at a certain point on the screen. While the buttons are down there may
be some kind of feedback: usually an object that follows the cursor. The click is usually only acted upon
when all the buttons are released, so if users decide they have made a mistake after pressing the buttons they
can slide the mousc to some harmless position before releasing the buttons. Holding all three buttons down is
also interpreted as a universal abort by most programs and the view manager. The click cvent is sent to the
program associated with the view in which the event occurred (through its VGT).

Clicking the Ieft or middle button of the mouse in a non-sclected virtual terminal will cause it to be sclected
for input. Views of sclected pads will be brought to the top. The input pad can be changed by typing the
control up-arrow character (octal 036) followed by a single command character. The only command
characters interpreted by the VG'T'S arc 1-9 to select the given pad for input. '

Although the user can always crecate views, some are created by application programs. In particular,
programs like the text editor will create a pad when a new virtual text terminal (pad) is desired. When a
V-System program requests the creation of a pad, the cursor will change to the word “Pad™. At this point, the
uscr holds down any button, and an outline of the vicw that will be created will be tracked on the screen, The
user positions the view where desired, and releascs the buttons. Other prompts can appcear as cursor changes
to denote that the next click will not be trecated as normal input.  Unfortunately such convenience features
make the view manager very device-dependent,

4.4.2 View ManagerMenus

The view manager menus can always be invoked by moving the cursor to the grey background arca or any
virtual terminal not sclected for input {cxcept in the banncr arca) and pressing the right button. The
following, commands arc available from the view manager menus:

Create View Creates another view of an cxisting VGT. Move the cursor to the desired position of any
onc of the four corners for the new viewport. Hold any button down, and move the cursor
to the diagonally opposite corner. An outline of the new view will follow the cursor as it
moves with the button down. |.ct the button up, and then point at the VG'I that is desired
to be viewed with the Ieft or middle buttons, or hit the right button and sclect the VGT
from the menu. Normally this command is only usced with graphics VGTs.

Delete View Onc view is clicked and removed from the screen. If the last view of a VG'T' is deleted, it
does not destroy the VG'T or the process associated with it. It is still possible to create
views of the VG'I by using the right button menu in the Create View command.

Move Viewport — Pressing any button sclects a viewport to move. While the button is being held down, the
outline of the viewport will move, following the cursor. “Ihe button is relcased at the
desired position.  Nonc of the other view parameters arc changed. A shortcut to this
function is obtained by pressing the middle button while pointing to the banner of the
desired viewport. The viewport outline will follow the cursor until the middlc button is
released.

Make Top Brings the view to the top, potentially obscuring other views. A shortcut to this function is
obtained by pressing the left button while pointing to the banner of the desired viewport.

.....
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Make Bottom Pushes the view to the bottom, potentially making other views visible. A shortcut to this
function is obtained by pressing the right button while pointing to the banner of the view.

Exec Control Selects a submenu to create another exccutive, destroy an exccutive (and the teams running
in it), kill a program, or control paged output mode. When creating an exccutive, the
outlinc of the new pad will follow the cursor as the user holds the button down. The user
lifts the button up at the desired position, or presses all three buttons to abort. A shortcut
to the cxec control menu is obtained by pressing both the middle and right buttons while
the cursor points to the gray background or the display arca of a viewport not sclected for
input.

Graphics Commands
Sclects another menu of commands that arc usually only applicd to graphics views. A
shortcut to this menu is available by clicking the right and left buttons at the same time
while the cursor points to the gray background or the display arca of a viewport not
sclected for input. These graphics commands are described below:

Center Window  Click the position to become the center of the viewport. This command docs not change

.j-::' the position of the viewport on the screen, just the objects within the view. Normally this
o command is applicd only to graphics views,

) Move Edges Push any button down next to an cdge or corncr, move that edge or corner to the new
o position, and lct the button up. The cdge outline should follow the cursor as long as the
-j: ” button is held down. 1oes not move the objects being viewed relative to the screen.

~3 Move Edges + Object
o Similar to the previous command, but this one drags the underlying objects around with
the moved cdge or corner, while the previous command keeps it stationary with respect to
e the screen.
o
Pl Zoom Invokes a zoom mode, indicated by a change in the cursor to the word “Zoom™. Users can
LA get out of this modc in two different ways:  First, clicking the Ieft or middle buttons when
") P - . .
.‘ ) the cursor is inside a view of a pad returns from the view manager and sciects that pad for
) input. As a side cffect that view is 2lso brought to the top. Second, users can click the right
mousc button to exit this mode. The cursor should change back to the normal arrow.
.-::j-: The left and middle buttons in zoom mode zoom out and in respectively. That is, the left
:;'4.' button makes the objects look smaller, and the middle button makes them look larger. A
§ ': shortcut to this modc is available by clicking the middlc and left buttons at the same time
. while the cursor points to the gray background or the display arca of a viewport not
S sclected for input.
.‘.-", .
_::{:, Expansion Depth Click to determine the view, then select the new expansion depth from the menu, Symbols
":': will not be expanded more than this many levels into the hicrarchy. Instcad they will be
X0 drawn as outlines with text for their names if there is room. 'The default expansion depth is
- infinity. so all Icvels will be normatly expanded.
L_art
b
-. -‘ . . .
; .-:.- Redraw Redraws all the views on the screen; necessary only during debugging.
[P 4
b 5 y . . - . - . - - - r .
v Toggle Grid Click once to turn the grid on if it is off, or off it is on in the view sclected. The grid dots |
-:«.-' are cvery 16 screen pixcls, and always linc up with the origin. ‘
o Debug Enablcs cxtra printouts, for maintcnance usc only. “T'his command asks for confirmation, ‘
:::-j to discourage its accidental invocation.
g
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:‘; 4.5 A Simple Application
n \ . . . . . .
09 The VGTS and View Manager provide many functions that cncourage applications to be simple and
. consistent. The siledit program, a simplc illustration cditor, is an cxample VGTS clicnt program. It uscs a
}_-' compatible file format with the Alto STt program, although some advanced featurcs such as macros are not
implemented [141). The main limitation of this format is that only horizontal and vertical lines are supported,
e with a limited range of fonts. On the other hand, it is simpler and faster than the other V-System illustrator
:'} (draw), and illustrations produced by siledit can be casily printed or inserted into other documents. A
= remote version of this program cxccutes under UNIX, although users prefer the V-System version when
- permitted by workstation memory limitations,
o
o 4.5.1 Basic Operation
b The siledit program is invoked with one argument in the V-System cxecutive:
e siledit filename.si1
.:3' It first attempts to open the file name given as an argument. If no such file exists, the program creates onc. A
:.: graphics VG'T is crcated, and the cursor changes to the “View” prompt indicating the creation of a default
o vicw. The default view will be slightly larger than the illustration, or a whole page if the illustration is cmpty.
o The user presses and holds any button causing an outlinc of the new view to appear and track the cursor. ‘The
user moves the upper left corner of the default view, and lifts the button up when the view is positioned.
= Next the siledit program prints the names of the text fonts to be used, and trics to load them into the
- VGTS. The cxisting illustration is displayed (along with some performance statistics), and the following
L prompt appcars:
) Use mouse buttons: Mark, Select, Menu
This mcans two mousce buttons arc used for the basic commands, with other commands available through
W combinations of buttons or from the command menu,
- ‘The murk, indicated by an * X" shaped cross, is onc end of lincs and the position of added text. Once added
- to the illustration, objccts can be modified by sclecting them and performing a modification command.
Sclected objects appear highlighted in some way, although the cxact form of the highlight may depend on the
8 VG'I'S implementation. In the SUN implementation, objects are normally black on white, with sclected lines
- half-tone gray and sclected text appearing within a gray box.
%
-~ 4.5.2 Commands
o .
.- Commands available on the mouse arc as follows:
‘-‘b . . . . " N
2 Left Button Maves the mark to the point of the click. The “X™ shaped cross moves to the new location.
" % ‘The mark is normally moved before drawing lines or placing text.
“
1 Middle Button  Sclects the single object at or ncar the click. Any other objects previously selected are no
5 longer selected. “T'he program will echo the kind of object selected, or issuc a diagnostic if
b no objects arc found.
)
e Left+ Middle Draws a linc from the mark to the point of the click. of current line width. The line is
:: cither horizontal or vertical, depending on which difference in position is larger. This is a
) faster way of drawing lincs than using the menu. The mark is moved to the point of the
: click. to facilitate drawing a scrics of connected line scgments.
O
’ Middic +Right  Adds the object near the click to the sclection. ‘This is in contrast to the Middic Button,
; which causes cxactly onc object to be sclected. Use this command to sclect several objects.
¥
o
~
;.
3
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b
7
;: Right Button Pops up a command menu, as described below.,
B
o More advanccd commands are available on the menu as follows:
J Quit Exits without saving the illustration. Usually the Write command should be used to save the
file, so if there have been changes since the last Writc command, confirmation is requested.

A

Line Width  Pops up a menu of default line widths. Sclect the desired new width from 1 to 8 units. Clicking
outside the menu results in no change.

Delete The sclected objects arc deleted.
Unsclect A click is requested; the object near that click will no longer be selected.

Draw Linc A click is requested, and a horizontal or vertical linc is drawn between the mark and the
position of the click.

Add Text A line of text is requested, and the text is added at the position of the mark in the current font.
Modify Text Sclects another menu for commands used to modifying text.
Write Writes the illustration back to the filc given on the command line.

Stretch Line  Position the cursor near one end of the sclected line, and hold down a button. The end of the
line will move following the cursor until the button is relcased. (Available only in the native
V-System version.)

Move Position the cursor anywhere in any view of the illustration and press any button. The selected
objects will follow the cursor until the button is rcleased. (Available only in the native V-
Systcm version.)

Copy Position the cursor anywhere in any view of the illustration and press any button. A copy of the
sclected objects will follow the cursor until the button is released. (Available only in the native
V-System version).

Box Move the cursor to one corner of the box. and press any button. While holding down the
button, position the opposite corner of the box. ‘The box will be drawn in the current line
width. The box can be aborted by pressing all three buttons at the same time. (Available only
in the native V-System version.)

Sclect Arca Move the cursor to one corner of the arca, and press any button.  While holding down the
button, position the opposite corner of the arca.  All objects within the arca will be selected.
(Available only in the native V-System version.)

Icbug Enables several debugging print statements, for maintcnance usc only. (Available only in UNIX
version,) )

The following commands arc used to modify text;
Edit'Text  The sclected textis stuffed inw the VG'I'S line buffer, and cdited by the user.

Default Font Displays a menu of fonts to become the new default font, for ‘Text added with the Add Text
command,

Change Font Displays a menu of fonts to be the new font for the selected text.
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»j:\
o .
‘«.:’.- 4.5.3 Selecting Alternate Fonts
[V L] .
g
) Two text font/size combinations are available in SIL. format, with regular, bold and italic faces in cach
font/size combination. Default fonts are Helvetica7 and HelveticalQ, with Helvetica7B, the bold face,
£ Helvetica7l the italic face, ctc. A third font, Template64, is used to draw circles and diagonal lines.
o . :
:.{ Other fonts can replace Helvetica by creating a file with the name filename . fonts. This file contains the
t::: names of the fonts to be used, onc per line. Comments arc indicated by a # character at the start of a line.

The default fonts are acceptable for illustrations to be included in papers, but for slides larger fonts like 12
and 18 point should be used. Thus, for example, the font file:

# font file for slides
\ Helvetical2

Helvetical8
could be used when making slides. A simple cominand to list the defined global symbols in the font library
can be used to determine what fonts are availabie.

4.5.4 Generating and Previewing Printed Copy

A rclated program called silpress produces printed illustrations from SIL format files. Alternate fonts
can be sclected as in the siledit program. The command line:
silpress filename.sil

converts the named illustration into a printing format file and quecucs it for the local laser printer. An option
- is available to retain the printer format file, to merge the illustration into a document produced with the
: Scribe or ', X document compilers. It may take several iterations to get proper positioning and sizc, but itis
faster than using a scissors and paste. ‘The show program can be used to preview documents including
illustrations before they are printed.

4.6 Summary of Implementation Status

Virtual Graphics ‘I'erminal Servers have been implemented for five varictics of SUN workstation, with two
kinds of frame buffers. Interface librarics have been written in C and Interlisp. ‘The C interface for UNIX is
callable from other languages such as Pascal. linplementations for the Iis workstation and VAaxStation are in
progress at the time of this writing.

Current applications include:

o Emacs and an Emacs-like text editor [21],

e o VLS layout cditor [42],

e a font design system [74),

e a font and bitmap cditor,

e (wo doctment illustrators,

e i document previewer,

e some distributed games, and

e a varicly of display tools for vector graphics and raster images.

All applications may be run directly on workstations if they have enough memory. Many may also be
availablc remotely. under systems supporting appropriate network protocols and interface librarics, such as
VAX/UNIX or DICSystem-20/7'T0rs-20.  Since all interaction goes through the VGTS, other clicnts include
exccutives and any remote applications accessible via TELNET-style protocols. Thus, we have implemented
clients of types A through D in Figure 3-5. With respect to short-circaiting, the VG'I'S handles cursor control,
hit detection, zooming, linc-cditing, and all screen management functions.
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The implementation is rcliable and fast cnough to be used as a general computing environment. In fact,
this thesis was written primarily using a text cditor under the VGTS, and all diagrams were produced using
the illustration cditor described in the previous section. The cxpericnce gained from this use helped to judge
the importance of criteria such as performance and reliability.

Appendix C gives some details of the development of the VGTS, including other people who contributed
software to the cffort. The prototype implementation took less than one year by the author, with slow
cvolution continuing by others. The next year was spent evaluating the design, which is discussed in the next
chapter, and taking measurements, which will be discussed in Chapter 6.
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—5 —
VGTS Design Rationale

The partitioning problem is full of trade-offs: most design choices have both advantages and disadvantages.
Some of these trade-offs are discussed in this chapter, along with rationale for the way decisions were made in
the VGTS. Onc of the basic trade-offs is that for cvery “feature™ to be added there is an associated cost. The
cost must be balanced carcfully against the potential benefit of the feature. Since this was a rescarch project,
we were concerned with developing the minimum functionality to create a tool for some prototype
applications and taking mcasurements, rather than a system that could mect everyone’s needs.

Many of the factors intcract with cach other. For example, the general partitioning issues discusscd in the
first section could causc performance problems discussed in the sccond scction, and analyzed in the third
scction. ‘The results of this analysis Icad to the centralization dcecision given in the fourth scction. Although
centralization aids in portability and uniformity, it can causc problems with customizability. In the last
scction, the suitability of the VGT'S dcsign for the future is discussed.

5.1 General Protocol Issues

Some basic problems appearcd when trying to define a good interface (VGTP) to the VGTS. Although
total application and device independence is a laudable goal, it can lcad to a VGTS that supports too much
function for some applications and too little function for others. Both situations lcad to excessive overhead:
the first because the VGTS is doing too much; the sccond because the application must go to extra lengths to
subvert the VGTS. For example, if the VGTS werc tailored for the basic SUN workstation, it would include a
varicty of routines for clipping and scaling. However, in the RIS workstation these functions arc provided in
hardware by the Geometry Engine [38]. General'y, the IRIS provides considerably more functions than the
SUN workstation, favoring additions to the VGTP. Thus, the VG'I'S itsclf had to be structured as a collection
of building blocks, and carcful consideration was given to the intended range of graphics devices and
applications.

5.1.1 Fundamental Implications of Partitioning

Although nctworks should be as transparent as possible, physical distribution raises fundamental problems.
In all cascs we would like to limit both the frequency of communication and the amount of data transmitted at
any onc time. In some extreme cases this might require caching mechanisms on the workstation and
ncccssitate complicated protocols to keep the workstation cache synchronized with the remote database.

Nevertheless, we observed that most interactive programs could be divided into a fronrend that converses
with the user and a backend that doces the real precessing, This simple model of user interaction is illustrated
in Uigure 5-1. ‘The ideal VG'TS would provide a common user interface portion and avoid the duplication
and inconsistent interfaces that currently abound between applications. 1o so doing, it would short circuit the
traditional intcractive response cycle between the user and the application [55).
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ron
User
End «— End
Short
Circuit Database

Figure 5-1: Uscr interactive responsc cycle
Short-circuiting is possiblc at a number of different levels, including:

o mousc-controlled cursor. The updating of the cursor position is performed by the VGTS in
response to user motion of the mouse (or similar pointing device).

e screen management functions: Thesc arc necessary to allow multiple applications to run
concurrcntly without interference.

o hit detection: Applications arc informed when a significant event occurs, such as selection of an
object; they do not keep track of the cursor position.

o cditing: The VGTS supports editing so only some high-level indication of the cditing changes
necds to be communicated to the application.

Higher-level short-circuiting, such as local hit-detection, provides:

1. better responsc for those operations that can be short-circuited,
2. better utilization of powerful workstation rcsources,

3. lower demands on the network (for distributed applications),
4. reduced programming required for applications, and

S. lower processing demands for hosts.

Howcever. to support high-level short-circuiting, the VGTS needs to be provided with high-level information
about input and display scmantics. ‘T'hat is, the VG'I'P must allow the application to communicate the model

that it is representing pictorially, not just the image of that modcl, as is common in contempuorary graphics
systems.

Imagine, for cxample, that multiple VGTs were mapped to overlapping viewports on the display screen. [f
the top VG'T' is repositioned on the screen, it and the previously obscured VG'H(s) must be redrawn.  If the
VGTS docs not have a model of the picture associated with the VG'T', the VG'I'S cannot redraw the picture in
its new position.  Similar observations hold for panning and zooming, Instcad, the VGT1'S would query a
possibly remaote application to redraw the picture, a potentially time-consuming operation.  Naturally, it is
cven more important for the VGTS 1o support a maodel if itis to provide generic editing,

‘The exact kind of modcel provided by the VGT'S could have ranged from simple (o complex. 1For example,
cven systems like GKS provide a rudimentary form of modcling through the Workstation Independent
Scgment Storage capability. ‘The power of using more general structure to define pictures has been exploited
since the pioncering SKETCHPAD system in the carly 1960s [135).  Ironically, a number of carly graphics
systems took this approach to its extreme by merging the application model and the display filc into a single
graphical data basc {36, 112].  ‘This approach fell into disfavor largely because it imposed a fixed
representation on all applications.  In light of distributed graphics, it is also impractical to support a single
data structurc spanning multiple machings.
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: A number of subscquent systems developed the notion of a structured display file that cncodces the
R hicrarchical structure of figures, but leaves most of the application-specific information in a scparate
' application model [S1, 52, 126, 148]. The structured display file is partially redundant, but provides a
rcasonable amount of structure for high-level short-circuiting. In particular, compared to the more
i conventional segmented display file, a structured display file can provide better response when editing
" objects. Our initial application was VLSI circuit layout, which often requires drawing objects that arc highly
structured and regular [83].

The use of structured display files in the VGTS was motivated primarily by Sproull and Thomas’s
\ Structured Format Protocol, which in turn was motivated primarily by network issues of the sort discussed in
g this scction [126]. However, that protocol was never fully implemented, primarily duc to the lack of sufficient
f computing power in the terminals available at that time.

o In contrast, morc traditional graphics packages do not retain object definitions at as high a level. This has
three major performance problems compared to the VGTS. First, defining complex objects can require
significantly more time, if those objects contain scveral instances of the same symbol. Sccond, cditing cxisting

objects is more time-consuming since the entire object must be redefined. Third, gencrating different views
=y of objects is considerably slower, since the application itsclf must redraw cach view. On the other hand, “on
F.o< the fly” graphics could be faster under traditional systems since the VGTS docs not permit an application to
{ simply “writc” on the display, but rather requires the application to repeatedly edit and redisplay an entire

C symbol.

j; The evolution of graphics protocols can be compared to the cvolution of general purposc programming
;{‘_ languages. The simple bitmap oricnted systems can be compared to assembly language, with total gencerality
::'- but lack of structure. The next step is procedure abstraction, which corresponds to languages like BCPL. with
N control structure. The final step is to provide both control and data structure abstractions, such as languages
like Pascal and Ada.
.
::.' Another worthwhile analogy is with low-level disk storage systems. Early attempts forced users to deal
: dircctly with the scctor, track, and head allocation of disk files. ‘I'he concept of “logical blocks™ divides the
W\ disk into uniformly sized and scquentially numbered blocks. Interacting with disks in terms of these slightly
} higher-level objects makes impossible some of the clever optimizations done by carly programmers.
r However, the advantages of this level make it almost universally used in modern operating systems.
K-
o’
~ 5.1.2 Replication Issues
-: The replication of data (keeping multiple copics) that results from the partitioning described in the last
Py section was another major design issuc for the VG'I'S. In graphics systems, the multiple copics arc usually at
,:.' different levels of representation, and the rcason for the copics is performance.  ‘The actual number of
- representations may vary, but most high-performance graphics systems maintain some kind of disptay list or
': display (ile, which is intermediate in representation between the application’s data structures and the final
displayed picture [56).
-

For example, an application usually reads some permancnt data files and constructs an internal model of
the objects being displayed. A structured display file contains information on structure and geometry, but no
application information. "The viewing process then displays this SPDF with some viewing parameters, in our
casc on a bit map terminal.  Thus, a typical situation may result in four levels of partially redundant
information. "This Icads to scveral natural places to partition the data in a distributed graphics system, as
illustrated in Figure 5-2.

.« 2 s 3 4, 1.3
-,.I_V"‘

In cach casc the data structures below the thick line are stored on the workstation, and those above the line
arc stored on some remote server machine. In traditional personal computers, cverything would be on the

HA L i

AR 4

T 4 LR A T

a ‘M "- ) .




58 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPIIICS SYSTEM

Personal
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Application l
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=

Figure 5-2: Possible data partitioning points

workstation, with the possible cxception of data on a large archival file server to back up the personal
computer’s files. For large but diskless workstations, U-¢ application program can still run on the workstation,
but access the data files over a network. For smaller workstations, the structured display file is stored locally,
but the application program runs on the machine with the file system. In the simplest of workstations, only
the bit map is stored locally.

Note that arrows only go onc direction, from the higher level representation to the lower level one. Each
representation can be generated from the next higher layer, which greatly simplifics the propagation of
updates. Pipclining, including possible hardwarc implementations, is much casicr if the conversion is always
in onc dircction. In actual practice, however, some amount of short circuiting can be done to provide faster
feedback, si- ce input has to travel in the reverse direction. 'The architecture and implementations of the
VGTS keep this short circuiting to a minimum, with only a few simple local functions vastly improving
average performance. More research can be done in the future within this framework on even higher levels of
short circuiting.

The V-System allows all configurations of Figure 5-2, although the first (personal computer) and last (bit
map terminal) have been thoroughly investigated in other work discussed in Chapter 1. ‘I'he configurations
labeled “small workstation™ and “large workstation™ arc the focus of this work.

5.1.3 Caching Issues

One way to further reduce communications costs would be to writc an agent for cach application that
maintains a cachc of the main data base. Once a cache is in place, the usual problems of updatce arisc. When
should the cache updated and how much of it is updated at a time? For cxample, there are two interesting
cascs in circuit layout:

e When viewing the entire design it is unnceessary to maintain the details of the lowest levels. This
information may be omitted in order to maintain the representation for the higher-level structure.
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e When viewing a specific component it is unnecessary to maintain the representation of picces of
the picture not now on vicw.

Thus the agent would be constructed in such a way so as to maintain only the necessary data. Appropriate
parts of the figure representation would contain the cquivalent of invalid pages, leading to the cquivalent of
- page faults.

The ideal VGTS would provide most of this support without requiring that a spccial-purpose agent be
. written for cach application. Although the current VG'I'S architecture allows caching, the current prototype
v docs not implement any. The size of most SDFs rarcly cxceeds two or three thousand bytes, which is an
insignificant amount of memory compared to the size of the VGT'S itsclf. This and other possible VGTS
extensions arc discussed in the final chapter.

-" ~.

Y vt
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~” 5.1.4 Transport Protocol Issues

Once the higher-level protocols arc decided upon, the transport and lower Icvel protocols must be

o determined. Possible choices for transport protocol include datagrams, byte strcams, and packet (or message)

P ': strcams. Strcams arc an obvious choice because they gencerally provide a high degree of reliability, can be
)‘ uscd with a wide variety of terminals and nctworks, and simplify programming the applications and the

service. In addition, if the workstation and remote host interact frequently or in volume, high bandwidth is
required, better achicved with virtual circuits,

If bandwidth requircmients are low, then the low delay of datagrams might be more appropriate.
- Furthermore, interactive graphics requires real-time communication, which places greatest importance on the
:f-j most rccent data. In contrast, strcams under load tend to lose or delay new data in favor of old data. ‘The
graphical rcpresentation also impacted our choice.  Since high-level information was being transmitted, the
loss of a single datagram would be catastrophic. Thus, only “rcliable™ strcam-oricnted protocols were used.

" Fortunatcly, the V-System architecture allowed us to experiment with several of these protocols. Each
x remotc application must have an agent on the workstation, so the application and the agent may communicate
e with whatever protocol they desire.  Since our prototype applications had relatively modest requirements,

N simplc encapsulations of the VG'TP with standard byte-strcam protocols were most widely used.

5.2 Performance Issues

Oy
[ ¥ e

s

'} Besides communication issues, performance was also kept in mind during every phasc of the design of the
> VG'IS. Without carcful attention, many distributed systems can cnd up being slower than their centralized

,. . counterparts. In particular, many previous distributed systems have failed because of lack of attention to total
}:7 system performance. On the other hand, although poor performance guarantees that a system will fail, high
‘_:-f performance docs not guarantee success. Other factors such as the various costs associated with high
::j performance cannot be neglected. '

o

Y

5.2.1 Code and Data Size

Despite the falling cost of memory, main memory can still be a major cost of a computing system. In fact,
no matter how much memory a computer system has, it scems to almost always nced more.  Eliminating
duplication is onc way to save memory, but often redundancy buys performance. A hardware cache is an
example of such redundancy uscd to speed up a physical processor. Similar techniques to take advantage of
redundancy were used in software, as discussed in Scction 5.1.2,
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60 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

Another way to save memory is cconomy of function: to not implement features that are rarely uscd, or
that can be done with cxisting capabilitics, unless they are necessary. IFor example, some users might like to
have blinking as a primitive attribute. Since blinking can be simulated by having the application program
repeatedly add and delete an item from a symbol, blinking attributes were not included in the VGTS. This
mcans that cach application program must include codc for blinking if desired. but the overhead is rarcly
encountered. On the other hand, diagnostics and error recovery arc intended to be rarcly used in properly
written software, but many understandable crror messages are included in the standard VGTS, since when
they are used they can provide invaluable information.

5.2.2 Resource Limitations

The concern for memory costs is another prime motivation for the usc of high-level display files instcad of
the more common bitmap approach. Note that the architecture docs not explicitly prohibit the storing of
bitmaps. and in fact a biunap item type is supported. However, Scction 4.2.1 described how the prototype
implementations redraw only from the SDF, with no bitmap caching of overlapping arcas necessary. The
current architecture requires that to display large images the entire bitmap must be transferred into the VGTS
for every change. This has proved adequate for simple image display tasks, or cditing small bitmaps such as
characters. For more intensive image processing applications, simplc raster operations could be provided on
raster objects to improve performance if necessary.

Somec display file approaches may scverely limit the maximum size or complexity of objects that can be
displayed. For example, many traditional graphics systcm support only one level of structure, the segment.
Since we arc primarily concerned with the research community, absolute limitations should be avoided
whenever possible.  However, making some assumptions about maximum resource limitations may simplify
the design or improve performance. For exainple, a reasonable limit on the number of virtual terminals or
views might be an acceptable limitation, so such limitations were included in the prototype VGTS
implcmentation.

5.2.3 Speed of Execution

The two main measures of cxecution speed of interactive systcms are response time and throughput.
Response time is more important when the uscr has to wait. Many uscrs of carly workstation systems had to
spend much of their time waiting while an “hourglass™ cursor appcared on the screen. Operations which take
significant amounts of time should have been donc in the “background”. This requires a priority-bascd
multi-process operating system, such as the V-System.

For all other applications for which the user docs not have to wait, throughput should be maximized. Since
the hardwarc trends are to more specialized processors, a natural division is suggested between processes
optimized for response time (interactive) and those optimized for throughput (batch). A fairly common
scenario for users of the VGI'S is to be running an cditor on the workstation in one VG'I' while monitoring
scveral long-running batch operations in other VG'I's at the same time.

5.3 Some Simple Models

As discussed in the previous section, many attempts at distributed systems have failed duc to poor
performance. In addition to the inherent cost of the computation, the costs of communication between the
parts of the distributed program arc incurred. Thus the rofal computation cost of a distributed program is
almost always higher than the total computation cost of an cquivalent centralized program.
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There arc two approaches to improving the performance of distributed programs, both by identifying and
overcoming these communication costs.  The traditional approach is to improve the performance of the
underlying nctwork communication mcchanism. The work of Spector and others on remote memory
references s in this category [125]. A morc promising approach taken in the VGTS was to decrease the
amount of network traffic by using higher-level protocols. In other words, reduce the frequency and volume
of communication by making the applications more loosely coupled.

For comparison, consider the many performance studics made of demand-paged virtual memory systems.
Although performance can be improved by speeding up the handling of page faults, better results arc usually
achicved by reducing the number of page faults. For cxample, increasing physical memory, tuning the page
size, improving the locality of the application, or using a better sclection algorithin can make as substantial a
difference as the speed of the disk.

Although this scction docs not attempt an cxhaustive analysis of the VGTS architecture, some very simple
madels can be developed.  As in other simplificd modcls of two-processor systems [132], a simple model is
necessary before a more detailed one.  Although some attempts have been made to model larger systems of
many processors [131), these have mostly been theoretical models with very little total system performance
data. At first glance onc might assume that the factor most important at any given time is the bottleneck, and
construct a qucuing thcory model. The problem is that in a complcte system the bottleneck is not so
well-defined.

$.3.1 Comparison to Cache Model

A cache is a well-known hardwarc mechanism to improve performance of a hardware design by taking
advantage of locality propertics of software {121]. The locality principle states that a program’s references to
data arc not uniformly distributed, but instcad concentrate around a sct of locations at any given
moment [108]. A small number of addresses arc responsible for a large fraction of the memory references.
The virtual memory concept is made possible by taking advantage of the principle of locality at the next
higher level in the storage hicrarchy. We can extend this concept to an cven higher level, and take advantage
of the patterns of usage for high-level graphics functions in the VGTS.

In a distributed graphics system the processor in the cache model plays a role analogous to the workstation,
and the main memory corresponds to other server hosts. ‘The performance of a cache can be roughly
characterized by four numbers:

T is the average time for access to the smaller but faster resource.,

local
emate 18 the average time to reference the larger but slower resource.
L]
comm 1S the time it takes to communicate between the local and remote resourcces.
p is the “hit” rate, or probability that an average operation can be handled by the local resource,

This large communications factor, 'l comume 18 the major difference from the hardware ciache modecl, along with
another component that is common (o both local and remote operation:

'l‘v gls is the average time taken by the VGT'S for both local and remote operations.

The average time for all oﬁcrations is then:
Tavg =P Tlocal +Q- P)( Toomm + Tmmolc) + Tvgls

The ideal would be to minimize this time with respect to the various hardware and sofiwarc tradc-offs
mentionced in the rest of this chapter.
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In more concrete terms, this model represents a terminal by making p zero {or very small), so no operations
arc performed locally. The terminal role is acceptable when T eomm and T are small components of the
overall cost, which implics a very fast mainframe and high-bandwidth communication (or batch-oriented
tasks). When p is near one, this models the personal computer configuration. Personal computers are fastest
when T loca) 1S SMall, which implics fast personal computers (or simple interactive tasks).

When the task is too large to be handled by the personal computer or terminal configurations, the following
approaches can make T . smaller:
1. Reduce T (communication time) by using special protocols or network improvements. ‘This
requircs measurements to determine if the actual bandwidth of the nctwork or the transport
protocols arc the bottleneck.

2. Reduce Tk)ml by using a faster workstation. As we will see by the measurement results, speeding
up the processor usually has the desirable sidc-cffect of also increasing cffective network
throughput, or reducing Tomm: However, this cost must be incurred on every workstation.

3. Reduce Tremoe DY Using a larger, faster computer for the server host. This cost can be shared

among all the workstations sharing a server.

4, Increase p by caching information on the workstation or using high-level short circuiting so that
more operations can be performed locally. Applications could also partition themsclves to put
more of their functionality on thc workstation. Note that this usually implics an increase of the
mcmory of cach workstation.

5. Reduce Tvsus by improving the performance of the VGTS itsclf. In fact, for many simple
applications with insignificant computation demands, this factor could be the only important one.

The valuc of short-circuiting has alrcady been introduced.  The next section goes into more detail on the
relationship between the local, remote, and communication times in the VGTS model.

5.3.2 The Time Dimension

VG'T'S performance can also be examined. by viewing the cvents along the time dimension.  IFigure 5-3
illustrates the time used on cach processor resource for one typical interiction response cycle.  ‘Fitne
progresses (rom Iell o right. ‘The first example is a personal computer configuration. The next two lines
represent the partitioning of the problem between a workstation and a server host.

‘The variablces in Figure 5-3 represent the following values:

Tlnput Represents the time to handic the input cvent. This is usually the same in both the local and
distributcd case.
T, Swapin Represents the time to swap in or othcrwisc change contexts to the application program on the

workstation.
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Figure §-3:  Simple request-response time model

TNe(l n Represents the time to send the input event from the workstation to the server host, for the
server to receive it, and possibly schedule and change context to the computation.

TPC Is the time for the computation to be exccuted on the workstation.

Server Is the time for the computation on a server. Usually cxecution of the computation is faster on a

larger central server host than the individual workstation.

LI pOut Represents the time to swap out the application program, or change context back to the graphics
system.

TNeout Represents the time to send the results from the server host to the workstation, for the
workstation to reccive it, and possibly schedule and change context to the display process.

Tl)iqpl;‘v Represents the time to display the result of the interaction.

The conclusion from Figure 5-3 is that it is faster to usc the workstation/scrver split when the swap times
plus the local computation time is longer than the round-trip nctwork overhcad plus the host computation
time. Thatis:

* ISwapln + TI’C + rSw::pOul > rNcun + TScrvcr + TNclOut
is the condition for superior performance of the partitioned configuration,

Since the V-System at the time of this writing supports neither paging nor swapping, 'I's‘wnp'“ is cither
insignificant (for programs alrcady fully loaded) or clse it is the time to load the application program,
Similarly, T, apOut is the time for a context switch. On the other hand, for the applications mentioned in
Scction 1.2.2 lha( must run on the scrver, the swap times arc essentially infinitc. On most personal computer
operating systems, swap times can be as high as scveral hundred milliscconds.  Even without physical
swapping, many operating systems have long context switching times.

The time dimension analysis suggests the following techniques to improve performance:

1. Reduce the TNclln and Ty 0w times by reducing dclay in the network, incrcasing the bandwidth

of the network, or increasing concurrency in the network overhead.
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64 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

2. Have the server send results back to the workstation as soon as possible, since the rest of its

computation can continuc in the background concurrently with TDisplay'

3.Usc the personal computer approach whenever possible with high timesharing loads.

Timesharing loads add a qucuing delay to TSe which could casily make it much higher than

rver’
Tpc on a powerful workstation.

These models provide the framework for interpreting the performance measurements to be given in Chapter
6. ‘T'he following sections will discuss important desigh considerations that may not be dircctly related to
distribution or performance.

5.4 Application Multiplexing Alternatives

Onc crucial job of the viewing scrvice is to multiplex the single user and display devices to the possibly
many application programs. This function is similar to that of the kernel or process manager of a general
purposc opcrating system.

5.4.1 Decentralized Control

Most operating systems handle contention for the processor by letting one process have full control, then
saving the statc of the processor, loading the state of the next process to run, and Ictting that process have full
control. A similar approach could be taken with graphics [35]. The reasoning is that this will allow higher
performance, since compiled programs usually have better performance than interpreted . programs.
However, it is not necessary to have decentralized control to have compiled display lists; it is just a question of
whcther the application program or the viewing service docs the compiling.

A number of sophisticated object-oriented window systems have been built for personal computers with
decentralized control, as discussed in Scction 2.2. While these window system approachces work well for local
applications, they do not extend well to remote applications, especially those written outside the framcework of
the particular language and workstation.  Even systems that attempt to provide the object-oriented “up-call”
functionality in a distributcd cnvironment have resulted in centralized control [59).

Onc major problem with decentralized control is that current graphics devices do not always allow the state
of the graphics device to be saved and restored.  Another problem is that application programs would be
non-portable at the binary level even if there were workstations that used the same processor architecture but
diffcrent graphics architectures. ‘This may not scem like a problem since source-level compatibility could be
retained, but it could result in a version “explosion™ with many copics of cvery graphics application, cach of
which must be maintained in parallel with the others. Since both of these problems existed for the SUN and
s workstations, the decentralized approach was not possible for the prototype implemientation.  ‘The
original motivation for virtual teeminals (see Scction 2.3) was to climinate the nJ mi version problem,

5.4.2 Centralized Control

The VGTS, on the other hand, is designed to opcrate in a cnvironment composed of a variety of
applications, programming languages, machines, and nctworks, with widcly varying terminal interaction
requircinents. A centralized approach, rarely taken in bitmap graphics systems, communicates a list of objects
to be drawn to the viewing service, and the viewing service actually renders the objects. ‘This virtual terminal
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approach, previously introduced in Scction 2.3, was taken in the VG'I'S duc to the advantages for portability
and partitioning.

It is not a contradiction (as it might scem) that partitioning implies centralization. Centralized control was
uscd in the VGTS to provide adequate performance despite expensive communication. The actual costs of
communication will be mecasurcd in Chapter 6. Another side bencfit of centralization is conscrvation of
mcemory. Fach application program is smaller becausc it does not need to be linked with the graphics library.

5.5 Uniformity and Portability

Another sct of issucs concerns different aspects of uniformity. ‘The gencral problem associated with
uniformity is that, almost by definition, uniformity may restrict fiexibility. 'The goal was to restrict how things
arc done, but not what can be done.

5.5.1 Device Independence of Applications

Since workstation hardware is changed constantly, software developed on one kind of workstation usually
docs not run on other workstations. Onc traditional approach to this problem have been guery operations.
Application programmers may takc advantage of query opcrations to change bchavior depending on the
results of the query [28]. This is a highly restricted form of device independence, that requires premeditation
by the applications programmcr of all possible devices with which the program will ever run,

Device independence has been recognized as a goal for quitc some time, but is even more important
today [60]. In fact, technology can progress so fast that by the time an application is finished, totally new
graphics devices may be available that were not even anticipated at the time the application was designed.

For cxample, the prototype VGTS took about onc ycar to develop, another year to measure and a final ycar
to cvaluate. In the mcantime, the architecture of the SUN workstation had changed drastically, so the
prototype implementation no longer worked on the new workstation. If the VGT'S architecture had been
tailored to the original workstation, then all the applications developed during these years would have to be
rewritten. Instcad, as soon as the new version of the VGT'S that handled the new workstation was installed, all
clicnt programs could be run immediately, without any modifications. VG'T'S changes were limited to one
low-lcvel module, the drawing manager, as indicated in 1<igurc 4-1,

5.5.2 Uniformity of User Interface

In addition to uniformity across diffcrent hardware devices, uniformity across different software tools is
another desirable goal. Powerful hardware like bitmaps-and mice provide the opportunity for more advanced
interfaces, but also can cause chaos if cach application choosces its own user interface.  Every programmer has
his own idca of what is “right” and those tastes may not match those of the intended users.  One partial
solution to this problem is the user interface management system concept which isolates the operation of a
program from the details of how those operations arc invoked [143].

The VGT'S provides a step in this direction, with the following uscr interface standards:

o Pop-up menu feedback is implemented inside the VGTS. ‘The view manager menus as well as
those provided by applications arc handled uniformly.

e A common linc cditor provides simple cditing functions like character and word delete to all
applications requesting keyboard input.
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66 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

e Banners provide a common mechanism to indicate some concisc status information, such as the
name of the program currently exccuting.

e All screen management, such as zooming and moving of views is donc uniformly through the view
manager, .

e Other conventions and library packages are provided as suggestions. For cxample, pressing all
three buttons simultancously signals an abort to most programs.

The result is that users quickly Icarned how to usc new tools, instead of having to adapt to the whims of the
implementor of the new tool.

5.5.3 Portability of Implementation

It was found to be casicr to modify the code of the first implementation to handle another kind of
workstation than to start from scratch. Scveral techniques were used to aid in portability:

e Restricting the range of hardware. In our case, the VGTS was targeted to higher-cnd workstations
and futurc higher performance hardware instead of the lower cost popular personal computers
currently being mass produced.

o Using a high level language. The VGTS was written in the C programming language [71). C
compilers arc widcly available for many computer architecturcs. The UNIX timcsharing systcm
has been ported to many different architectures successfully by using C [66].

e Using a standard computer architecture. The prototype VGTS implementation was on the
Motorola MCG68000 architecture, which has several different implementations used in many
commecrcial products {100).

e Attention to modularity and isolation of machinc dependencics. This was only achicved by
actually supporting two or more devices with the samce source code. Once the system worked on
two machincs, the third was casicr, and so on. ‘The first few cfforts detected subtle hidden
machinc dependencics that would otherwise be overlooked, such as byte ordering problems [40].

Portability was another of many propertics greatly helped by cconomy of features. A small system was
inhcrently casicr to port than a larger system. For this reason many attractive features were not included in
the VG'TS dcesign unless they were. found to be necessary.  For example, some uscrs requested up/down
encoding of the keyboard, or advanced support for special function keys. Unfortunately, the implementation
alrcady workced with about ten types of keyboards, some of which did not have up/down cncodmg or special
function keys.

Although the trend to faster but cheaper graphics workstations is unmistakable, the time between the start
of a design and its production is usually underestimated. For example, a major computer manufacturer
announced a workstation product and demonstrated it in July of 1982, In the fall of 1982, a rescarch contract
with Stanford was ncgotiated that included porting the VGTS 10 this new workstation, By the summer of )
1984 the project shifted ciforts o a newer kind of workstation. Hardware progress had been so geeat that the
workstations were obsolete before they were delivered.

A more important problem with porting the VGTS was not technological but political. Most workstation
manufacturcrs were unwilling to reveal low-level details of their graphics devices. If they contained custom
hardwarce, the manufacturer wanted to protect the trade sccrets involved in the hardware, so other
manufacturcrs could not usc the same techniques. If the graphics devices were simple frame buffers driven
by software, the low-level raster operation functions were proprictary, to prevent the use of the software on
other machines. In our case we had no desire to pirate trade secrets, but we failed to convince the
manufacturers that it was in their best interests to give us the information.
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i 5.6 Customizability
fo %
N Unfortunatcly the goal of uniformity was in direct conflict with that of customizability. Although at first
- customizability secms attractive, there are many hidden costs. For example, people often work together on a
N singlc project in a rescarch environment. Highly customized interfaces make exchange more difficult, if users
(0 cannot usc their custom commands on other workstations. On the other hand, since rescarchers are often
l;-: . systems programmers themselves, they have irresistible urges to change a program that they do not like. 1fthe
r‘ : interfaces arc not designed carcfully and flexibly cnough, uscrs will develop their own versions of the system
) anyway and the goal of uniformity is lost.
Y '
1
4{'_‘5 5.6.1 Customizability by Programs
‘ ) )
.'f.: The author of a program may want to specify some slightly device-dependent “hints™ about the display
process. For cxample, a program may have information on the size of some object or its desired location on
- the screen. The program may also wish to advisc the VG'I'S on how the objects should be viewed. Although
MY the VGT'S architecture allows such hints, only onc was provided in the prototype implementation: An
:;::‘,-' application can declare the size of a default view.
: :::j.‘ Onc cxample of a programmer who wanted customization of the vicwing process occurred in an integrated
‘ VL.SI layout cditor and design-rule checker. ‘The author of such a program requested the ability to position
_ an item within a view, so that a design rule violation could be centered in the viewport. Such a feature could
easily be added by creating another VG'T' with the item as its top-level symbol, and then defining another
I default view with the dcsired coordinates. The view manager could also include commands to center a view
. on coordinates typed by a user, instead of pointed to by the mousc. ‘Therefore, the view manipulation
- - capability was not added to the VGTS client interface.
T Y A common argument is that programs should be ablc to perform any function that a user can perform. This
}1 is not provided in the current VGTS, since the user interface deals with views and physical screens, while the
't-:: application interface intentionally hides these objects and deals with graphical items and virtual terminals.
3_.5 Onc arca of future rescarch is the design of a different kind of interface that could be used for customized
b view management. However, it is important to make the clear distinction between non-uniformity on the part
J of the application tools, and customization of those tools on the basis of the uscr.
‘oA
N 5.6.2 Customizability by Users
"t
-{“ A uscr may want to specify a profile to tailor certain aspects of the uscr interface to his or her needs. For
i R cxample. novice uscers may want an interface that is casier to learn or in which it is harder to make mistakes,
N whilc cxpert users want more powerful interfaces with commands available quickly. In addition, many
"‘f aspects of user interfaces arc a matter of personal taste.  With respeet o screen management, some people
;?_-' prefer o usc arbitrarily overlapped viewports as implemented by the prowtype VG'I'S, while others prefer to
.‘»{‘j use the tiled approach, in which the view manager causes views to exactly fill the sereen without overlap [140).
“d Another open question is the proper form of menus. In the current implementation, one button click causes
e the menu to appear and another causcs the sclection. ‘This reduces the probability of errors when incorrect
_‘,‘;‘, button combinations arc given, but requires two uscr actions for cach menu sclection. Other systems cause
<. the menu to appear when the button is pressed, and the selection to occur when the button is relcased.
':::: Some systems usc profiles on a workstation or application basis, but they should really be provided on the
o basis of uscr, since users and applications should be able to use any workstation. ‘The VGTS architecture
A allows this customization of the view management process, but the current implementations do not realize this
‘.‘_-'f capability. Partially this is duc to the lack of a user identification concept in the current V-System, but also |
:3 due to the fact that the conventions as implemented have proven rcasonable in actual use.
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68 PARTITIONING OF FUNCTION IN A DISTRIBUTEED GRAPHICS SYSTEM

5.7 Suitability for the Future

The future in the computer industry is hard to predict in detail, but some gencral trends are certain,. We
wanted to takc advantage of these trends whencver possible, instcad of tying the design to technology that
would quickly become obsolcte.

5.7.1 Future Display Devices

1.arger, faster bitmaps, and special-purposc graphics hardwarce should become less expensive in the future.
For example, while this thesis was in preparation, the Apple Macintosh was made available for about $1000
with a University discount; this is less than most alphanumeric terminals. ‘The Macintosh has a fairly small
display screen and low-performance processor, but the mere existence of the mouse and bitmap display in a
mass-produced product arc encouraging.

The IRIS workstation is an cxample of a higher-performance and therefore higher-cost system, with custom
hardwarc applicd to the viewing process [39]. The current IRIS implementation renders the output primitives
using a bit-slice microprocessor, and is too expensive for wide-spread use. However, the RIS is indicative of
the trend to applying special-purposc hardware to graphics systems,

Current developments include “smart memories™ that use special devices to perform rendering, including
anti-aliasing and shading via ray-tracing, dircctly in thc frame buffer [63]. Performance can be cnhanced
further by using pipclining and parallclism. With this kind of hardware the BitBIt model of operations breaks
down. Instcad of moving bits around, the interface to the hardware is at a higher level: declaring primitive
graphics objects like vectors and polygons.

There are two differing opinions on the cffect of this advanced specialized hardware. One linc of rcasoning
is that since all this custom hardwarc is so expensive, the raw graphics device must be used at a very low level
to avoid wasting any power. The other linc of rcasoning is that new hardware can be used to allow
programming at a higher level, with straightforward. simple, and clegant approaches replacing the special
mechanisms necessary on slower hardware. The first opinion appeals more to thosc who design and market
the hardware, while the sccond appeals to those who develop the software and usc the workstations. Since
softwarc costs arc becoming increasingly more important, in the long run the clegant software approach
should dominate.

As the VGTS was designed, it was hard to predict what the future held, but onc thing was certain: there
would be many morc changes in the kinds, quality, and cost of graphics devices. Onc good way to take
advantage of these new devices, given this uncertainty, was to usc abstract, high-level interfaces and
concentrate on portability as done in the VGTS.

5.7.2 Future Computer System Organization

fronically, the personial computing trend may be short-lived.  Computer systems are still expensive, and
people can not afford fully configured personal computers. On the other hand, microprocessors arc almost
free. and getting cheaper. ‘The cost of a microprocessor should eventually approach the cost of a memory
integrated circuit, so despite the increasing densitics of memory, the trend should be to less memory per
processor instead of more memory per processor. ‘The result should be computer systems that consist of many
microprocessors working together.

For example, the cluster of workstations for which the VGTS was developed consists of about ten diskless
SUN workstations connected with a local network to three VAX-11/750s, one VAx-11/780, and a shared
DECSystem-20. In fact, cach of the workstations is really a multiprocessor in its own right. In addition to the
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MC68000, there arc simplc finite-statc machines to refresh and update the frame buffer, a bit-slice processor
to handlc the Ethernet, and microprocessors in the keyboard and mouse.

For these reasons, protocols that trcat the workstation as a terminal (that is, partitioning below the VDI
level as illustrated in Figure 2-2) arc not very interesting for the future. ‘The main limitation with these
protocols is that they assume only onc connection at a time. Since future computer systems will probably
have many processors, and a single user will probably use many processors at once, the VG'1'S should allow as
much concurrency as possible.  Concurrency is a uscful concept both at the hardware level (as many
computers as possible should be kept busy) and at the higher levels of uscr interface (the user should be able
to have many tasks in progress at the same time). As a first step, the VG'I'S provides the graphics operations
in a scparate process, instcad of as functions called by the application programs.

5.8 Backward Compatibility

Although planning for the future is important, the VG'TS design did not ignore the past. It is unrcasonable
to cxpect all software to be rewritten for every new system. For this reason, one VGTS goal was to be able to
take advantage of as much cxisting softwarc as possible. A similar approach was taken in the BRUWIN virtual
terminal system [96]: the terminal manager was designed to take advantage of cxisting tools, instcad of being
the focus of all new developments. Even though BRUWIN provided support for only text on a conventional
graphics device dircctly connected to a timesharing system, it proved to be a uscful tool. Similarly, the VGTS
also was ablc to access applications running under the UNIX timesharing system through remote execution.

5.8.1 Encapsulating Existing Facilities

For example, the V-System itself (including the VG'TS) was compiled on a VAX/UNIX timesharing system.
Eventually more software development tools were ported to the native V-System environment. The ability to
run the tools under UNIX greatly cascd the transition. Many specialized or proprictary programs arc stifl
accessed through the UNIX server interface.

In addition, through the usc of terminal emulators and user TELNET programs, a VGTS user can run
applications anywhere throughout the ARPA Internct. This remote terminal capability has wrned out to be
onc of the most heavily used features of the current implementation. ‘The next chapter will describe some
cxperiments using cven interactive graphics programs in this manner.  Fortunately, many tools can be

accessed in a batch fashion, so there is little performance degradation when they are executed remotely. For

cxamplc, this thesis was produced with a document compiler that ran on a UNIX server host.

5.8.2 Relation to Standards

Another way of taking advantage of the past is to follow standards. The graphical facilitics of the VGT'S are
similar o those several existing graphics packages, including those conforming to the Core [147] and
GKS [64] standardization cflorts. ‘The principal differences are:

1. standardized support for object modeling as well as viewing;
2. hicrarchical structure of objects;
3. the ability to handle multiple, distributed applications simultancously;

4. Icss flexibility in terms of attribute and coordinate transformation facilitics.
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In general, the standards remain oricnted toward a single, dedicated host, and pay little attention to
distributed systems issucs, especially the use of contemporary powerful bitmap workstations. Furthcrmore,
therc were no specific applications written for these graphics standards that had to be supported by the
VGTS. Thercfore the VGTS did not conform to any of these standards.

Some recent graphics cfforts are more in the spirit of the VGTS. Both NGS[24] and Piucs [4), for
example, extended the concepts of GKS and Core to include structured display files, similar to the VG'I'S. As
with previous standardization cfforts, these go beyond the current VGTS in support for attributes and
coordinate transformations. In fact, had they cxisted at the time the VGTS was first designed (the fall of
1981), we might have adopted many of their facilitics outright. However, ncither emphasizes distributed

graphics (despite its name, Network Graphics System, in the case of NGS) or multi-application (window
system) facilitics.

Table 5-1 summarizcs how the VGTS graphics capabilities compare to some traditional graphics packages.
The first column gives the name of the graphics package, and the sccond gives the number of dimensions in
most opcrations. ‘The next column indicates the kind of structurcs, including no rctained segments in minimal
GKS, simplc onc-level segments in CORE and GKS, exccute segments (like procedure calls), and copy
segments (like macro cxpansions). The next column gives the approximate number of functions, which is

always larger than the small number of graphics primitives. The last column gives the approximate years
during which the désign took place.

System Dimcnsions Structure Functions Ycars
CORE D Scgments 227 1977-1979
GKS Maximal 2D Segments 185 1978-1982
GKS Minimal 2D None 48 1981-1982
NGS iD Copy/Exccute 181 1982-1984
PHIGS iD Copy/Exccute 180+ 1983-1985
VGTS 2D Exccute 30 1982-1984

Table 5-1: Comparison of graphfcs packages to VGTS

The Virtual Device Interface, VDI, could be used as a real terminal protocol in the VGTS, by developing an
SDF interpreter that would gencrate VDI commands. The same observations hold with respect to
NAPLPS [6). ‘This would allow a single VG'TS implementation for all devices meceting the specification. An
intcresting question is whether all device dependencies should be below the VDI (or equivalent) layer, or if
common code could be used (o simulate the commonly missing hardware capabilitics. For cxample, the code
to handle dashed lincs for devices having only solid lines, could be written once instead of inside cach device
driver. ‘There seems to be an unwritten rule that if a graphics device has any special hardware capabilitics,
then these “features™ must be uscd, at almost any sacrifice in soflware structure. ‘This could causc problems if

devices are supported that provide graphics primitives in hardware that arc not included in the VGTS
architecture.

5.9 Summary and Motivation for Measurements

‘This Chapter discussed the rcasons behind the major design decisions taken in the VGTS. The next
Chapter attempts to quantify the degree of these trade-offs. For example, the strictured display file approach
favors highly structured picturcs, and incremental cditing over initial display. The penalty for initial display
and unstructured pictures should be small compared to the improvement for structure. Since total system
perforinance was considered important throughout the design, some simple models were developed and
examined in this Chapter. The models show that performance can be improved by reducing the frequency of
communication and the amount of information communicated.
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;-_:f The centralized control of the VGTS has benefits for uniformity and portability, but still allows some

;..“: customization. Partitioning as excmplificd by the VGTS should become more important as future display

l and computing devices are introduced. On the other hand, users should be isolated from changing hardware
by encapsulation of cxisting facilitics and adhcerence to standards. Experiments are also needed to prove that

:'.-: . performance is adequate compared to the older systems being emulated and replaced.
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—6 —
Measurements

‘The previous chapter discussed many qualitative advantages of the VGTS design, such as portability and
suitability fo futurc hardware. Quantitative measures arc also desired to provide a firm basis for cvaluation.
Onc ultimate measure of a system's success is whether people choose to usc it to get work done, even in a
rescarch project. “T'his criterion certainly applies in the case of the VG, since the high level of intcraction
enforced by the VGTS may trade off some functionality, flexibility, or performance. If the amount of these
qualitics lost is small cnough compared to the advantages gained, then the approach may be worthwhile for at
least some class of applications.

For example, some graphics terminals allow special cffects like limited animation using tricks with the color
map. On a workstation shared with other applications, these special mechanisms cannot be used, since
resources like the color map arc shared between several different applications. This chapter will show that
carcful design of VG'T'S protocols can make performance acceptably close to that of other systems that do not
have the advantages of the VGTS.

6.1 Nature of Performance Measurements .

Performance measurements have been taken for three benchmark programs, two for graphics and one for
text, in a varicty of test configurations. In addition, the illustration cditor used to create the diagrams in this
thesis was instrumented to measure memory usage, construction, and display rates.

6.1.1 Benchmark Programs

The first graphics benchmark created a fully-connccted 36-agon with a radius of 350 pixcls, drawing 630
vectors or 288,364 pixels. ‘Thus the average vector size in this benchmark was 457 pixels. Since the picture
was a fully-connccted polygon, many different angles of vectors were used. This was intended to test the
performance of traditional vector graphics functionality. ‘The action was repeated ten times, and the numbers
listed are the mean of ten consccutive trials.

All numbers given as vectors per sccond in this chapter refer to this same artificial benchmark, so they
should be valuable for relative comparisons but not absolute limits. However, since most significant
computation was done before the timed parts of this program, and the number of items in the picture is
relatively large, the intent was to measure the peak rates of adding items to a symbol and then drawing that
symbol. This would mcasurc the rate of initially drawing a ncw picture.

The sccond graphics benchmark was intended to test the effects of using structure on a simple picture of the
kind used in a VLSI layout cditor {42]. This benchmark drew an array of five by six NMOS inverters [93].
Lach of these 30 inverters consisted of 20 rectangles, for a total of 780 rectangles, all filied with one of four
stipple patterns (which would appear as colors in a color implementation) representing the four NMOS layers.
First the picture was drawn using a single-level SDIF and adding all 780 rectangles individually. ‘The sccond
part of this test defined a contact cut symbol, then an inverter symbol, and then added 30 calls to the inverter
symbol, with only 23 primitive items in the SDF,

Although the regularity factor of this drawing (the ratio of total items divided by defined items, or 30 in this
casc) is fairlty high, modern VI.ST designs typically have regularity factors in the same range, and the trend is
to increasing regularity [83, 84]. In fact, many of the designs currently under development could never be
possiblc with smaller regularity factors. Independent of the structure, the resulting image was the same, about
400 pixcls on a side.
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- The text benchmark programs simply wrote characters until stopped by the user. This behavior would
. occur, for example, when displaying a new page in a text editor. The characters were from a fixed-width font
with cach character cight pixels wide and 16 pixcls high, or 128 total pixels per character. This was the
standard font used by most applications cxcept those doing specialized text display. It was developed by the
author by manually cditing the output of the METAFONT type design program [74].

6.1.2 Test Configurations

The actual structurcs of the protocols and programs uscd in the performance measurements arc itlustrated
by in Figures 6-1 and 6-2. The benchmarks were conducted with the following communication configurations:

Local Application running on the same workstation as the onc used for display. The application sends V
messages directly to the VGTS. Since the application is on a separate tcam (address spacc), the V
kernel's data transfer operations are nceded to move information from the application to the

| VG'I'S address space: no shared memory is uscd. This is illustrated in Figure 6-1a.

SUN-IKP Application running under the V-system but on a different machine, connected via Ethernet to
b, another workstation, and using V-System IKP. As illustrated in Figurc 6-1b, this involves the
2 application using the same message-passing; interface, but with kernels implementirg the Inter-
‘ Kernel Protocol.

VAX-IKP  Application running under VAX/UNIX, connected via Ethernet to the workstation, and using
V-System IKP. As illustrated in Figure 6-2a, this involves the application writing to a pipe, which
is rcad by the V-server program, which sends messages over the network to a V kernel. The
workstation runs a simplc program called fexecute which is necessary only because both the
VG'I'S and the V-server are servers; they both are sent messages to which they reply, instead of
inttiating the sending of mcssages by themsclves.

Pupr Application running under VAX/UNIX, connected via Ethernct to the workstation, and using Pup

TrINEE. Figure 6-2b illustrates this configuration. ‘I'he application uscs pscudo-tty devices

N (ptys) to communicate with the PUP TuLNEr server program Telser. 'This program sends

pe packets over the nctwork to the workstation, where a user PUP TELNET program sends the
messages to the VGTS.

. E-1P Application running under VAX/UNIX, connccted via Ethernet to the workstation, and using
N Internct ‘TEINET.  This is Figurc 6-2c. ‘The application again uscs pscudo-tty devices to
N communicatc with the 1P TRINET server Telnetd. ‘The implementation of the transport
Y protocol in this casc is in the UNIX kernel, and a scparate program called the Internct Scrver on

the workstation. The user TELNET program finally sends the messages to the VGTS, :

Ao

A-1P Application running under VAX/UNIX. connected via Fthernet and ARPANET to the workstation,
and using Internet 119 N1, This is the same as Figure 6-2¢, but with network including a gatcway
and an extension through the ARPANIEL backbone.

4 a4 2 & 2T

Tests were conducted using standard 10 Mbit/sccond Ethernet unless otherwise noted. Tests were also
- pertormed on the experimental 3 Mbit/second Etherncet [41]. 1<ach configuration used workstations with both
8 and 10 MH/~ MC68000 processors. For configurations involving VAX-11's, 750's, 780's, and a 785 were usced,
Y and the tests were conducted during unsociable hours with correspondingly light loads. Rcal applications are
often run with high timesharing loads, but these arc hard to control for the sake of the experiments.

.
.
v ‘e

Even more difficult to control were changes to underlying software. Some variation through time incvitably
occurred in the VGTS, other workstation software, and host sofiware.  For example, introducing new features
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Application
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a) Local b) SUN-IKP H

Figure 6-1: Workstation configurations tested

Application V-gerver Application PUP Telser Application IP Tedned

e | Y pty oy | Y
Unix Unix Unix TCP
net net net
V kernel V kernel V kernel
+ VIO T VIO + vnoT Y +vno T vnoT Y
VGTS Y vaTS BSP VGTS TCP
 fexecute PUP Teinet otn {nternet b
sarver
a) VAX-IKP b) PUP Telnet ¢) IP Telnet
!
Figure 6-2: Secrver host configurations tested
and fixing crrors typically reduce performance, while casing bottlenccks found during cxperiments improves '

performance.  Although cach table in this Chapter compares configurations with similar software, two ‘
different tables may compare dissimilar versions. ‘The detailed results in Appendix 1) include the date of cach
mcasurement,

6.2 Summary of Performance Results

Given the declarative nature of the VG'TP, some measures of interest are:

P S MY [

construction rate "I'hc ratc that objects can be added to a symbol, without any display opcrations.

batch rate ‘The rate that objects can be added to a symbol, and then displayed.
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1]

L . . .

[ incremental rate 'The rate that objects can be added and displayed as each is added.

s

}0- display rate The rate that objects can be displayed once they are defined.

Al Construction rate is the best measure of the peak nctwork offered load for distributed graphical applications.

‘The batch rate takes into account display overhcad, which is fairly indcpendent of the network. Nevertheless,

-, it gives the best measure of overall graphics throughput. On the other hand. the incremental rate gives a

_:ja: better measure of expected response, when interpreted as the maximum number of display transactions per

sccond. Display ratc is another measure of responsc for operations such as screen rearrangement or redisplay
" of defined symbols.

~

[~ Unstructured vector graphics performance is summarized in Table 6-1. Additional details appear in the rest
& of the tables in this chapter and in Appendix 1), In all of the tables, columns arc labeled with the test
v configurations listed above (local, SUN-IKP, VAX-IKP, PUP, E-IP, and A-IP). Most rows are labeled with

(specd, host, ra‘c) triples, where speed is the speed of the SUN workstation processor (8 or 10 MHY), host is the
type of VAX (750, 780, or 785), and rate is onc of the rates listed above (construction. batch, incremental, or

",{f display). All rumbers are in vectors or characters or rectangles per second, so larger numbers indicate better
k) . .

~ performance. Results have been rounded to two significant digits, and should be taken as order of magnitude
e estimates only, duc to thc many factors involved. However, as we shall sce, cven these very rough
-:Cf measurements can be helpful to determine the feasibility of this approach.
_ Table 6-1 presents the performance figures for configurations employing the most common processors, 10
_‘:« MH>~ SUN and VAX-750. As shown by thc construction rate row, objects can be constructed at 440
- vectors/second for applications running locally, and 380 vectors/sccond for Ethernet-based applications.
:{: Overall graphics throughput, as shown by the batch rate row, is 220 vectors/second for local applications, up
o + to 350 vectors/sccond for FEthernet-based applications, and 120 vectors/sccond for ARPANET-based

apphcations. Increinental display permits 62 vectors/second for local applications, up to 87 vectors/sccond
; for Ethernet-based applications, and 39 vectors/sccond for ARPANI:T-based applications. Actual display rates,

o5 shown in Tablc 6-3, arc on the order of 430 vectors/sccond, or .2 million plxcls/sccond, or §
\ :',. microscconds/pixcl including all display overhead.

o

5 Vectors/sccond

< Configuration Local _ _IKP__PUP_ E-IP__A-IP

- 10, 750, construction 440 380 200 220 130

T 10, 750, batch 220 350 200 220 120

-7 10, 750, incremental 62 81 S8 87 39

:::: Table 6-1: Summary of graphics performance

Y]

The text results are summarized in Table 6-2. ‘Throughput is 7700 characters/sccond for local applications,
:3 up to 4300 characters/sccond for local nct-based applications, and 1900 characters/sccond  for
-4 ARPANIET-based applications. Additional details appcar in Tables 6-4 and 6-5.

0N Characters/second
Conliguration - Local _ IKP_PUP  E-IP_ A-IP
10, 780, text 7700 4300 1600 4300 1500

N Table 6-2: Summary of text performance
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6.3 Feasibility Evaluation

The most gratifying conclusion is that the VGTS performs better than many systems that researchers are
currently using. Traversing the structured display files to refresh the screen is within 25% of the speed of the
bare hardware, accessed through a package of low-level graphics primitives [22]. Symbols can be constructed
at about the same rate as they can be displayed. l.astly. as shown by the incremental rate row in Table 6-1,
applications may issuc around 60 LEditSymbol - AddItem - EndSymbol scquences per sccond. ‘This is more
than the 10-20 updates per sccond needed to make limited forms of animation possible at the application
level, without any nced to resort to display file compilation or other special techniques.  Display file
compilation is still possible in this architecture, and may be nceded for graphics devices that are faster in
relation to processor speed.

Graphics pipcline Vectors/second
1. Local application -» frame buffer (clever code) 570
2. VGTIS -» frame buffer . 430
3. Remote application > VGTS - frame buffer 350
4. 1 .ocal application -»W -»framc buffer 300
5. Local application »VGTS -» frame buffer 220
6. Local application -> frame buffer (straightforward code) 150

Table 6-3: Effect of graphics pipeline

Pcrhaps the most important concern is how the VGTS performance compares to more traditional graphics
architectures. Table 6-3 compares a number of different “graphics pipclines™ to help makc this comparison,
‘The pipclines include the following: )

1. An application writing dircctly to the frame buffer using the standard, highly optimized
implementation of vector drawing.

2. The VGTS refreshing the frame buffer from a structured display file.
3. An application program on a server host using the VGTS to construct and display the picture.

4. A local application using an alternative “Window System™ [10). T'his is an cxample of the more
common graphics modcl in which the application is in control of all drawing,. .

5. An application program dn the workstation using the VGTS to construct and display the picture.

6. An application writing dircctly to the frame buffer using a straightforward implementation of
veetor drawing.

By comparing the performance of these pipelines, we can estimate upper bounds on the cost of the major
architectural features of the VG'TS. Lines 1 and 2 show about 25% performance degradation for all drawing
overhead in the VGT'S. The principal costs are:

o Coordinate transformations.  Applications specify objects in a virtual coordinate space, which
must be transformed into device coordinates. ‘This could be done at SDIY creation time using a
form of display file compilation. but is currently done at draw time, avoiding the usc of cxpensive
arithmetic operations like multiplications by using shifts.

o a s e —

e Clipping. Objects arc displayed only within window boundarics. Objcects that lic entircly outside
of the window should not be displayed, but thc parts of objects that lic partially within the
window should still appear.

o SDF Interpretation. The SDF structure was designed to be interpreted very quickly. With an
overhead of one pointer reference per item, this constitutes very little of the drawing overhead.
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Lincs 1 and 4 can be used to estimate the cost of centralized control. The W system is representative of the
“minimalist” approach, with actual drawing centralized but few of the other features of the VG1S. Thus the
47% overhead of W can be attributed primarily to:

e Message overhead. This will be incurred whenever the graphics scrvice runs as a separate process
from the application. Besides the time for the actual message passing and context swntchmg. the
operations must be encoded into and decoded from the message.

e Data movement. This is the cost of copying information from thc address spacc of the application
to the server, incurred whenever the server is not linked into each application.

Comparing linc 4 to linc § indicates a 27% performance difference when using the VGTS instead of
W. Although some of this may be duc to SDF interpretation overhead, most is duc to the following VGTS
features:

o Client stream interface.  The prototype interface library encodes all graphics operations into a
strcam of bytes, and uscs the standard V 170 protocol. ‘This allows for 1/0 redirection, even
among machines with different bytc orders.

o Server stream interface. The prototype server implementation decodes the graphics operations
from the byte strcam and calls appropriate internal functions.

o Error checking. The VGTS attempts to do most crror checking, such as verifying that table
indiccs are within their proper bounds, at SDF creation time, so subscquent redraws will perform
at full hardware spced.

o Mcmory allocation. Mcmory must be allocated to the SDF display records for cach new object.”
Oncc the memory is obtained from the system, this involves only a simple pointer movement
down the free list.

e SDF Saving. The actual overhead for saving the display record involves storing the coordinates
and attrioutes (usually insignificant) and calculating the extent of the currently open symbol,

Despitc these costs, the VGTS distributed rate (linc 3) is higher than W (linc 4). This shows that a significant
amount of the overhead is incurred on the client, which results in a bencfit from concurrency. It is, in fact,
standard protocols such as V 1/0 and the bytc strcam concept that facilitate distribution.

Note that almost all of these costs must still be incurred even if SIDFs were not used to retain the graphics
information: the only saving would be the few microseconds to store into the display record. OFf course, some
overheads could be avoided by using only onc process, one address space, screen coordinates, ctc. but the
resulting system would not have the advantages described in the last chapter.

Finally, comparisons of application«<screen throughput show the VGT'S at its worst casc, since they do not
take advantage of the display file. Even though the initial picture sometimes takes longer to appear when
using the VG'I'S, once it is defined it can be drawn very quickly.  [For example, in response to screen
management operations, any W-like system would require the application to redisplay its contents at the 300
vectors per sccond rate, while the VGT'S would redisplay at 430 vectors per second, a 43% performance
advantage.

A simple qualitative mcasure of text performance is how the VG'I'S compares to standard RS-232 9600
baud tcrminals, which gencrate about 940 characters per sccond. For cxample, consider a typical page
forward command in a screen cditor which changes about 1000 characters. On a 9600 baud RS-232
conncction this would take about one sccond. With the VG'TS it takes about a fifth of a sccond, which is fast
cnough to sccm instantancous to most uscrs,

The remainder of this chapter will attempt to show the cffect of varying different parameters, and cvaluate
the cffects to the limited cxtent possible in the configurations available. These parameters include: '
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» speed of the workstation and graphics device

e speed of the remote host (if any)

e speed of the network

o choice and implementation of transport protocol

e level at which information is communicated, including characteristics of the virtual graphics
terminal protocol

6.4 Internal Factors

For many application programs with large processor demands, the importance of the speed of the graphics
can be insignificant compared to the importance of the speed of the application. These programs are ideally
suited to the VGTS architecture since the application can be run on a larger, specialized, high-performance
processor instcad of the workstation, Thus, the major concern is when the frequency of interaction is high.

Even though the VGTS was designed for efficient partitioned operation, it is still good at local operation.
As we shall sce, the most important factors affecting the performance of the VGTS arc the same as those
affecting most other programs. ‘This might be considered as unfortunately mundane, but it means that the
VGTS can takc advantage of thc many well-known techniques for making typical programs run faster; there
are no inherent performance reasons to prevent the usc of VGTS concepts. .

6.4.1 Effects of Graphics Package

» »
Onc of these important factors that is often overlooked, is that for any program, most of the time is spent in
a small part of the code. In the case of the graphics benchmarks, much of the exccution time was spent in the
vector or rectangle drawing function. The Bresenham algorithm, which is usually the fastest, was used to
draw vectors [20]. However, cven a straightforward implementation of the fastest algorithm was much slower
than an implcmentation using clever coding of the inner loops of the Bresenham algorithm.

In the clever implementation, the vector drawing function compiles a custom-made inner loop for cach
vector. ‘This takes a little more time to sct up for cach vector, but this initial time is kept small by using table
look-ups. As scen in ‘Table 6-3, using compiled vectors instcad of straightforward coding yiclded a 200%
improvement in vectors per second on the draw rate. However, using the VG'I'S introduced some overhead
on the drawing times since it is interpreting a structured display file. Table 6-3 showed that the SDF
overhead is very small compared to the large improvement from compiled vectors.

Unfortunately, the speedup from chosing a good algorithm and optimizing its inner loop is good for only a
one-time increase in performance. Once the best algorithm is found and its inner loops arc hand-optimized,
more work will not result in more performance improvements.  On the other hand, the cost of carcfully
recoding one module or writing a lew lines of assembly code is usually small, so the return on the investiment
is good up to a point.

6.4.2 Effects of Processor Speed

Another fairly obvious fact that is often overlooked is that the speed of an application is dircctly related to
the speed of the processor on which it runs. ‘T'able 6-4 compares the performance of workstations that have
two different basic clock rates, but are similar in most other respects.  Use of 10 M1z SUN workstations
instcad of 8 MHz workstations yiclded up to 22% improvement. ‘The principal rcason that the increase from
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.
‘_‘: 8Mhz to 10Mhz 68000 processors did not produce a 25% increase in the performance was that the 10MHz
“ design required polling of the keyboard and mouse. Similarly, exccuting the application on a VAx-11/780
2 instead of a VAX-11/750 yiclds up to 50% improvement (sce Table 6-5).
::}. Vectors/second
. Configuration_ local JKP_ PUP E-IP A-IP
. 10, 780, batch 210 190 130 110 92
o 8, 780, batch 180 150 110 99 88
i
N Characters/second
i 10, 780, text 7700 4300 1600 4300 1900
b 8, 780, text 6700 3200 1400 3600 1800
b _ Table 6-4: Effect of workstation speed
' Two of the more surprising results relate to the bencfits of distributed computing. First, applications can be
L expected to run faster when distributed between a VAX-780 and a SUN workstation than when run locally (see
[ Table 6-6). Even if construction rates are lower in the distributed case, the concurrency from the use of two
oY processors resulted in higher rates for both batch and incremental display. Second, some applications exccute
5 faster using a VAX-785 on the ARPANET than using a VAX-750 on the local net (see Table 6-7). Since the
C ARPANET is substantially slower than the Ethernet and network communication in general is slower than local
o communication, the conclusion is that CPU specd is the dominant factor in this instance.
5 ,
L ) Vectors/second
' :: Configuration IKP PUP E-IP
e 10, 780, construction 510 210 170
10, 750, construction 340 130 110
_ZE? Characters/sccond
- 10, 780, text 4300 1600 4300
- : 10, 750, text 4100 1400 2300
j Table 6-5: FEffect of remote host speed
'f:: Note that Table 6-4 and 6-6 contain batch rates, to cmphasize overall performance. ‘Table 6-5, on the other
e hand, contains construction rates. to emphasize the performance of the processor executing the application,
. L. L .
" Howecever, regardless of where the application cxecutes, the workstation is always required to do some work,
X namcly, to maintain and display thce graphical objects. ‘Therefore, performance is morc scnsitive to
& workstation speed than to remote processor speed.  For example:  whereas a 25% increasc in workstation ‘
~ speed results in almost lincar speed-up. a 100% increasc in VAX speed results in at most 50% specd-up as seen
”4 in Tables 6-4 and 6-5. Note that Tables 6-4 and 6-5 were constructed with carly versions of the protocols;
ey

0 later changes to the protocols increased the sensitivity of 1P to server host speed, but decreased the sensitivity
*rf of IKP and PUP.

Vectors/sccond

l’ ; Configuration 1.ocal E-1P

o 10, 780, batch 220 380

f s 10, 780, incremental 62 92
5

ey Table 6-6: SUN vs. Ethernet-based 780

;:.. Onc might conclude from these measurements that there is little reason to distribute applications, since
(N
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Vectors/second
Configuration EIP AP 1
10, 785, construction 160 -
10, 750, construction 130 4
10, 785, batch 140
10, 750, batch 125

Table 6-7: ARPANET-based 785 vs. Ethernet-based 750

batch rates arc comparable between local and remote applications. Performance should be improved as two
processors arc used. However, our benchmarks make no significant computational or databasc demands that
would take advantage of faster hosts. Morcover, as mentioned in Scction 1.2.2, some applications simply
cannot run on the workstation, due to memory or language requircments, for cxample. Non-graphical
applications can be expected to depend more on disk or operating system performance, softcning the impact '
of processor speed. On the other hand, compute-bound applications, including any that use floating point, v
arc impacted more hcavily by host processor speed.

[ R Y )

L

6.4.3 Effects of Graphics Hardware

Table 6-8 gives the cffect of two measured frame buffers. The first linc in the table refers to the original
frame bufcr which simplificd graphics primitives by providing bit-shifting hardware. The second line refers
to the frame buffer in which display memory is bytc-addressed like all other memory. The sccond frame
buffer is about 30% slower on vector drawing than the original frame buffer. However, creation is faster on
the Sun-2, duc to a slightly different 170 architecture. Although the Sun-2 is still about 15% slower for the
total local batch rate, remote batch rates are sometimes higher duc to CPU saturation.

Vectors/second
Configuration Draw Creatc Batch E-IP
Sun-1, 750 430 440 220 220
Sun-2, 750 290 470 180 170

e VK 8 3.3

Table 6-8: Liffect of frame buffer

6.5 Protocol Factors h

The nature of the applications and of the information they communicate among their distributed parts
make the network behave differently from what might commonly be expected. ‘The use of high-level graphics
protocols reduces the degradation that is cxperienced between different bandwidth networks.  “This can
influcnce the choice of network protocols since the perfornsnce penalty of accessing a high-performance host
over a long-haul internetwork instead of o less powerful host Jocated on a locial network may be outweighed
by the ‘diﬂ'crcncc in host capabilitics.

20y 2.

From another point of view, the higher-level protocols tend to increase the CPU cost of fast
communication. This may bc an advantage. duc to the decreasing costs of CPUs compared to 5
communication, but also mcans that less of the CPU is available for other tasks. In concrete terms, the
protocols arc “high level” since they deal with graphical objects like lines and polygons instead of low-level
bitmap opcrations, and they take advantage of structure.

-
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6.5.1 Effects of Structure

As discussed in Section 3.4, the VGTP allows objects to be defined in terms of graphical primitives such as
vectors or rectangles, or in terms of other objects. Once the objects are defined, they can be made to appear
on or disappear from the screen with short commands of only a few bytes. The performance advantages of
retaining the display files on a dedicated workstation, introduced in Section 5.1, have been known for some
time [88]. The following tests were performed with a program that used the structuring facilities of the VGTS
to create 30 instances of a symbol consisting of 26 rectangles each.

The results for the structure benchmark are given in Table 6-9. The first thing to notice is the very low rate
for incremental performance, especially over long-dclay nctworks like the ARPANET. By batching and
pipclining the opcrations, performance increases by a factor of 7 for local operations, 30 for Ethernet
opcrations, and 40 for ARPANET operations. Using structure instcad of an unstructured list of primitive items
increascs performance again by factors of 3 to 4 for both local and remote operations.

{
Yo
v
k\4
h\ .

Rectangles/second

Y Configuration Local E-IP A-IP

0 10, 750, incremental 41 5 2

. ;S 10, 750, pipclined incremental 61 66 36

g 10, 750, batch unstructured 310 180 81

& 10, 750, batch structured 1070 670 370

b~ Table 6-9: Effcct of structure

r:: Sor;'nc other intercsting observations can be made from Table 6-9 that reflect the value of batching and
-'r:; structurc. First, the time to define and display the picture for a local application was about 1 millisccond per

item. This is roughly the time to perform a local Send - Reccive - Reply sequence in the V kernel 31}, so any
protocol that uscs a message transaction for cach item will be slower. Sccondly, it is faster to run this

? benchmark over the ARPANET and use structure than it is to run the same program locally and use
._3 incremental or unstructured display. ‘The latter is comparable to traditional graphics systems. 1t is also faster
to run the program across the Ethernet and usc structure than it is to run the program locally, cven with
- batching.

~ Structure introduces a slight amount of overhead, since the VGTS must trace through the symbol data

") structurc. Howcver, in this benchmark the structure interpretation introduced an overhcad of about 20
_ milliscconds out of about 900, or less than 3% of the local draw timc. ‘Thus there is little performance

3 advantage to usc a scgmented display file instead of an arbitrarily structurcd one. By using a lincar list instcad
N of a linked list, display records could be 16 bytes instead of 20, or a 20% savings in memory. Unfortunately
& this would make inscrtion and delction much more difficult. Morcover, the SDF representation is alrcady )
quite concisc, as will be shown in Scction 6.5.3.

=

~ 6.5.2 Effects of Batching and Pipelining )

o

= Comparing the batch and incremental rates in ‘Table 6-1 as well as “Tablc 6-9, shows the importance of
.7 batching. ‘I'he original implementation of the VG'I'P employed a return value for cach operation. [n the
I- current implementation operations arc batched so that values are returned only after an entire sequence of

o opcerations (such as all changes to a given symbol) have been performed. ‘This change reduced network delays
'_»:j substantially, yiclding performance improvements of up to factors of 301
P .

The first two lines of Table 6-9 give the cffect of another important change to the VGTP. By removing the

L return values from the EditSymbol and EndSymbol opcrations, cven incremental operations could be
X -5 pipclined, resulting in much more concurrency than the “stop-and-wait”™ protocol resulting from return values
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on cach transaction. The reduced message traffic caused an increase of 50% for local operations, and increases
of factors of 10 to 15 for remote operations. In fact, remote incremental operations are almost always faster
than local incremental operations due to this concurrency.

675.3 Comparison to Bitmap Protocols

Many approaches to graphics within a distributed system use protocols based on bitmap manipulation.
Unfortunately, bitmap protocols can be incfficient in both their bandwidth and memory utilization. By
reducing the length of the descriptions of graphical objects, they are made independent of the structure of the
bitmap as well as being smaller in both transmission and storage,

The advantages of the SDF for memory usage arc indicated in Table 6-10. In the vector benchmark, the
SDF represented the fully-conncected polygon with 20 bytes per item, or 12,600 bytes. This comparcs to the
800 by 800 bitmap area, which would take 80,000 bytes. In practice, most pictures are cven less dense than
the fully-connected polygon, so the advantage would be even greater. In particular, the SDF approach has
the advantagce as long as there are more that 20 bytes of bitmap space for cach item in the SDF. The rectangle
benchmark shows that even without using structure, a factor of about two in memory savings is possible.
Using structure, the 900 bytes used by the SDF is a factor of 37 less than the space for the bitmap. Similar
large improvement factors in network bandwidth requirements will be discussed in Scction 6.6.

Bytes of memory used

Benchmark SDE Bitmap
vector 12,600 80,000
rectangle, unstructured 15,600 34,000
rectangle, structured 900 34,000

Table 6-10: Effect of SDF on memory usage

6.5.4 Effects of Transport Protocols an'd Their Implementations

As noted for Table 6-5, three different transport protocols were used, with significantly different
performance results. ‘The V-system supports both a local protocol and two gencral inter-network byte-stream
protocols. ‘The local protocol provides an interprocess communications facility between V-system processcs.
The two general protocols are the Xerox PUP family implemented through the RTP/BSP level, and the ARPA
Internet protocol family implemented through the 'TCP level. User TELNET programs cxist on top of both.
The network configurations were illustrated in Figure 6-2.

Unfortunatcly it is very hard to comparc only the cffect of protocol design, because of many
implementation issucs that vary between the protocols.  For example, the impiementition of PUP BSP did
not usc any of the windowing features available in the protocol, resulting in much lower performance than the
1P. More important, the packet size used in the 1K implementation was 1024 bytes, while both PUP and IP
uscd packets of O or 200 bytes. On the other hand, the incremental rates for the 1K experiments were very
poor. duc to the fact that a UNIX server process was polling cvery few scconds for output (rom a pipe, while
the other protocols were interrupt driven.®Thus the implementation of the protocol may have a greater effoct
that any propertics inhcrent in the protocol itsclf.

Fortunatcly we were able to experiment with different implementations of the same protocol. During the
coursc of our experiments, there were two major implementations of the ARPA Internet Protocol available for

6I‘hc Unix V-server could be modificd in 4.2 to use the select sysiem call [68], which would climinate this dclay.
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VAX/UNIX systems. The first was done by Bolt, Beranck and Newman (BBN) and was for the 4.1 version of
UNIX [61]. The second was done by the University of California at Berkeley for the 4.2 version of UNIX [68].
The relative performances of these two implementations of the same protocol are given in table 6-11. The 4.2
implcmentation is 14% faster for batch construction and display rates. ‘The difference in peak throughput
ratcs is even more significant, but cven this higher rate is several orders of magnitude below the actual
bandwidth of the network. Possiblc reasons for this will be discussed in the next section.

Vectors/second
42 4.1
Configuration IP/TCP____1P/TCP
10, 750, construction 140 110
10, 750, batch 93 81
10, 750, incremental 7.8 48

Table 6-11: FEffect of TCP implementation

‘Table 6-12 indicates the effect of changing the relative priorities of the application program or the TEILNET
server program. This test was done using the PUP protocol on a local 10 Mbit/sccond Ethernct. The first
column gives the results for normal operation. For the sccond column, the operating system gave priority to
the FRLNET scrver program. Batch performance actually decreased, since more network packets were sent.
For the third column, both the application and the TELNET server were given priority, which incrcased both
the batch and incremental rates. However, as shown in the last column, the best performance was obtained by
giving priority to the application.

Vectors/second
Telser &
Configuration Normal Telser Application Application
10, 750, batch 170 160 190 200
10, 750, incremental 47 48 58 58

Table 6-12: Effect of Process Priorities

Another interesting comparison is between remote cxecution on a timesharing host and exccution on
another workstation. Table 6-13 displays this comparison. ‘The construction rate is about the same on the
VAX/UNIX system and on the V-System. The increinental rates on the VAX/UNIX implementation are very
poor without pipclining, due to the high delay. Note, however, that the total batch rate and the pipelined
incremental ratc arc much higher on the VAX than on another workstation. ‘This is duc to the fact that there is
actually littlc concurrency in the remote workstation casc, duc to the synchronous VIKP messages. Much
better performance could be obtained by replying to the message before it is processed, instcad of after the
opcrations arc performed.

Vectors/second

SUN VAX

Configuration IKP 1KP
10, 750, construction 380 330
10, 750, batch 190 350
10, 750, incremental 29 4.6
10, 750, pipclined incremental 44 81

Table 6-13:  Effcct of IKP implementation
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6.6 Network Factors

The use of networks implies both limitations in bandwidth and increcased dclays. All of the above factors
(and our design and implementation) combine to render the actual network bandwidth insignificant. Table
6-14 shows that although a 3 Mbit/sccond Fthernet is about 60 times faster than the 56 Kbit/sccond links
used in the ARPANET, using a backend host on the local nctwork yiclds less than a 50% performance
improvement over using a backend host on the ARPANET®. Morcover, there was very little measurable
performance difference between using the 3 Mbit/second experimental Ethernet rather than 10 Mbit/second
standard Ethernet [44]. The column labeled E10-1P refers to standard 10 Mbit/second Ethernet.  Although
the Ethernet is about 180 times faster than the links used in the ARPANET, the Etherncet construction ratcs are
less than twice the ARPANET rate. In fact, most of the difference in the total batch rate is duc to the delay of
the ARPANET and intervening gateway, not any bandwidth restriction.  Earlicr implementations of the
protocols had cven less of difference.

. Vectors/second
Configuration E-IP E10-1P A-IP
10. 750 4.2, construction 220 230 130
10, 750 4.2, batch 210 220 120

Table 6-14:  Effect of network bandwidth '

These results can be attributed primarily to the level of communication as discussed in section 6.5.1, and the
conclusicn that processor speed is the usual bottleneck. This is consistent with other measurements of
Ethernet performance [120] that show very low utilization of the available bandwidth of the Ethernet, and
comparatively long delays on the ARPA Network. Thus, these systems rarcly approach the limits described in
analytical studics that concentrate on performance under heavy loads {145). In fact, these protocols can be
uscd on very low-bandwidth commmunication links.

Each AddIltem call sends 20 bytes of data, so a construction rate of 230 items per sccond (the Ethernet load
given in ‘Table 6-14) corresponds to only 4600 bytes per sccond, or about 40 Kbits/second. about 0.4% of the
Ethernet's bandwidth. Due to the small amount of data, graphics could cven be possible over standard specd
telephone lines. For example, at 1200 bits/sccond, a peak rate of 7.5 items/sccond should be possible. 'To test
this, the experiment was run successfully on a workstation over a 1200 bits/second telephone link. Several
other rates were tested using point-to-point RS-232 conncctions at various speeds, with the results given in
Table 6-15.

ltems/sccond
Configuration 1200 2400 4800 9600 _ E-IP
10, 750 4.2, construction 74 14 26 54 166
10, 750 4.2, batch 6.2 12 23 46 131
10. 750 4.2, structure 84 142 230 320 380

Table 6-15:  LifTect of point-to-point communication rates

For the structure benchmark, cven at 1200 bits/sccond, the measured creation rate was 7.4 items/sccond,
very close to the maximum 7.5 calculated above. This rate is slightly less than lincar in relation to the
bandwidth, indicating that cven at low speeds the CPU can be a factor. Morcover, the total rate when using
structure was 84 items/sccond at 1200 bits/sccond, which is twice as fast as running the program locally with
incremental drawing (the first entry in ‘Fable 6-9). Structurc and lack of significant delays also makes this

ﬁIn fact. the experimental Fthernet is really about 293 Mbit/second. The difference between this and 3 Mbil/second is greater than
the 56 Kbit/sccond of the ArPaNET link!
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structure rate faster than the batch rate for the ARPANET (the last cntry in Table 6-9). Significant dclays can
ceven be seen in the local Ethernet IP results, as given in the last column of Table 6-15. ‘The 9600 bits/second
structure rate is only about 15% slower than using Ethernet, even though Ethernct has a raw bandwidth a
thousand times greater.

6.7 Human Factors

The actual VGTS could be instrumented to take data during production use. This information would
record the frequency of opcerations and the corresponding response time. A “user simulator™ could be written
to simulatc a rcal uscr's command sequence, with suitable randomness. This could be used to tunc the
performance of the VGTS to match the user profiles gathered in the above cxperiments. More claborate
instrumentation results would be very interesting, but are beyond the scope of this thesis.

. Objects  Time __ Rate Bitmap SDF
Maximum 365 1370 266 - 40K 73K
Mean 116 485 234 21K 23K
Median- 101 430 235 19K 20K
Minimum |, 33 160 23 2 13K 07K

Table 6-16: Instrumcntation data

Instcad, the illustration editor uscd to create the diagrams used in this thesis was instrumented to mecasure
both response time and memory usage. The detailed mcasurements are given in Table ID-4 in Appendix D,
with a summary given here in Table 6-16. This table gives the maximum, minimum, median, and mcan for
cach valuc. These tables list the number of items in cach figure, the time for display in milliscconds, the
resulting rate (including both creation and display) in items per sccond, the memory that would be needed to
store the bitmap (in thousands of bytcs), and and the memory used in the SDF (also in thousands of bytes).
The average times were under half a sccond, resulting in quite good response. The memory savings averaged
around a factor of tcn for using an SDI instcad of a bitmap.

6.7.1 Levels of Responses

Unlike other studies which consider throughput the factor to be optimized, we have concentrated on
optimizing response time. Expceriments have shown that users prefer systems with low variability of response
time, cven if the throughput is slightly lower [98).

Onc natural division of functions from a linguistic point of view is into the following three gencral
categorics [151):

Lexical  ‘Thesc operations require immediate user feedback, on the order of 50 milliscconds. This rate
(20 cvents/sccond) corresponds roughty to an upper bound on the speed of very fast typists
(keystrokes/second).

Syntactic Thesc operations involve a single syntactic operation, and can take up to 0.5 to 1 sccond.

Semantic  Major operations can take on the order of tens of scconds without the users losing their trains
of thought.

Clearly all lexical intcractions should be performed on the workstation. In fact, the VGTS linc cditing and
cursor tracking account for most of these Iexical actions.  Syntactic actions include screen management and
sclection feedback., In the VGTS these operations are typically performed outside the scrvice, but in
programs residing on the workstation. Syntactic responscs can cven be donc across the network if the load on
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the remote host is not very high. Larger-scale scmantic operations, like loading and running large programs,
searching central databascs, or compilation, are typically donc on remote scrver hosts or distributed between a
server host and the workstation.

6.7.2 Keystroke Data

Many studies have been done for text editors to determine the common operations [26, 57). These studies
can be cxtended to graphics, but are also valuable in their own right since a large part of any user’s interaction
is still textual. The main conclusion of these studics is that the majority of the users’ time is spent doing very
simplc repetitive tasks. Thus we concentrated on making these few simple tasks faster by taking advantage of
the power of the local workstation,

6.8 Discussion of Results

To summarize our findings, the primary factors affecting performance of our distributed graphics
applications are, in approximatc order of importance:

1. Speced of the workstation.

2. Spced of the remote host, if any.

3. Level of communication, as determined by the virtual graphics terminal protoéol.
4. Bandwidth of the nctworks employed.

Essentially the same observations hold for text. Note that these obscrvations rclate to the degree of
performance improvement relative to the degree of change in the indicated paramcters. Thus, a 50%
performance improvement duc to a 200% increasc in processor specd could be considered relatively greater
than a 300% improvement in performance duc to a 6000% incrcase in nctwork speed. 'The importance of
CPU spced and amortizing communication costs over large buffers was a major conclusion of one of the few
other similar studics [85].

It is rélatively casy to rate the sensitivity to hardware factors. Software factors arc another matter; it is casy
to measure the absolute performance improvement resulting from a change in soflware, but quite difficult to
measure the cost of the software change. Nevertheless, certain conclusions will be drawn based on available
information. Also note that there are limits beyond which changing onc factor will not affect perfonmance;
for example, a CPU-bound application running on a remote host will be little affected by an increase in
workstation speed.

CPU spced rates at the top of the list simply because desired speed-ups can be achieved almost indefinitely
by substituting more powerful workstations and backend hosts. Continuous improvement is not possible with
network protocols.  EXP, for example, provides as good performance on the local net as can be achiceved.
Another way of saying this is that nctwork protocols arc limited by the available hardware, and the most
important picce of hardware is the CPU.

6.8.1 Hardware Factors

As workstations become more powerful, onc might think that offloading functions from hosts to the
workstation means that slower backend hosts can be used. In reality, faster hosts arc required to keep up with
the increased demands of the workstations. On the other hand, onc might think that as networks become
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faster, communication is cheap. Unfortunately, nctwork interfaces have not kept pace with bandwidth, so
that many nctwork operations remain CPU-bound. In both cascs, the offloading and increased bandwidth
may allow more users to share the same resource, but do not increase the performance for individual users.
Hence, faster hosts are needed, not slower ones,

Similarly, nctwork controllers arc now being marketed with microprocessors that are intended to offload
tasks from the main processor. Our expericnce has been that such controllers are usually slower, not faster,
than simpler and cheaper controllers that perform fewer functions but use fixed logic at a higher speed.

With respect to network bandwidth, sensitivity is dircctly related to communication requirements.
Comnunications requirements arc inversely related to the frequency of communication and the amount of
information transmitted. both of which are reduced by the techniques discussed above. Thercfore, the
remarkable inscnsitivity of our applications to network bandwidth implics that they are quite scnsitive to the
“level” of communication. :

6.8.2 SoftwareFactors

This high level of communication is duc to the Virtual Graphics Terminal Protocol design. In particular,
the ability to batch many operations into a singlc update using a small number of bytes provided large
increascs in performance.

It is hard to make dircct comparisons about network protocols independent of their implementations. For
cxample, a protocol inside the kernel of an opcrating system is usually more responsive than if it is
implemented on top of the kerncl. Of coursc, a processor runs at the same speed both in kernel and user
state. The increased responsivencss comes with the cost of increasing the size of the (usually always resident)
kernel and the related difficultics of debugging at lower levels.

In our particular case, despite the fact that the PUP protocols are simpler than the ARPA Internet protocols,
ARPA Internct-bascd TELNET conncections can sometimes run about twice as fast as PUP-based ones. This is
attributed primarily to the fact that PUP is implemented as an application outside the Unix kernet whcreas
the ARPA Internct protocols arc implemented inside the kernel,

For very time-critical functions such as network communications, messages and process context switches are
cxpensive cven in systems designed to provide very fast message passing and light-weight processes. ‘The
interested reader should refer to {82] for a more detailed analysis of the networking issucs which arc not of
direct concern of this thesis.

6.8.3 Fitting the Model

‘The experiments given in this chapter give some cstimates of the times used in the modcls of Section §.3.
For example, peik pipelined incremental rates are about 60 interactions per second. or Ty o0 + Tnean OF
about 176th second.  If this is less than the swapping, times 'I‘Wmh' + ISW.KM then the workstation/host
split will be faster, even with comparable computation times. Most of today's pcrxun.ll computers take much
longer than 1760 sccond to swap an application out and back in. The advantage will incrcase with more
powerful hosts and lcss powerful workstations.

Of course, carc must be taken when generalizing these results to other programs. These benchmarks were
intended as communication-intensive limits, since they only do graphics and no rcal computation. More
sophisticated applications could be cxpected to achicve even larger speed-ups when distributed.  'The
instrumentation results show that the synthetic benchmarks are not fundamentally different from actual
applications, except for slightly slower rates duc to the computation by the application. No claim is made that
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k] :: these results allow us to predict the performance of an arbitrary program. On the other hand, a protocol that
‘-,‘ provided one hundred items per second in our experiments will probably be faster that onc that provided ten
o items per sccond. More analytical work necds to be done to accurately predict performance, but these results
provide a start.
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| el
1 Conclusnons and Future Work

. The previous chapters described the motivation for, the design, implementation, rationale, and
‘, . measurcments of a simple distributed graphics system. This Chapter draws a numbecr of conclusions from this
K- work, and presents possible extensions for the future.
b

7.1 Structured Display Files and Virtual Terminals

The first important conclusion is that the structured display file technique can be combined with the virtual
terminal concept, resulting in an architecture for distributed graphics. The virtual terminal concept, described
in Scction 2.3, provides the user with access to multiple simultancous distributed resources. The Virtual
. Graphics Terminal Scrver mediates between application programs that share a workstation dedicated to a
N single uscr.

A a0 AL

[+ The declarative nature of structurcd display files outlined in Chapter 3 reduces communication, and allows
\ higher-level short circuiting. The performance and decreased memory utilization motivations for structure
given in Scction 5.1.1, are supported by the measurcmients in Section 6.5.1. In particular, SDFs can yicld both
1§ higher performance and lower memory requirements than traditional graphics systems. These advantages
increase as picturcs become more structured, and applications perform more incremental updates. The
VGTS performs cursor motion, screcn management, and keyboard cchoing internally (as described in Section
N 5.1), resulting in a short-circuit of the intcractive responsc cycle for these common operations.

7.2 User and Program Interface Separation

The VGTS architecture first specificd only the application program interface for defining and modifying
objects, in Scction 3.4. A separate user interface for viewing those objects was then specified in Scction 4.4.
The prototype implementation rigidly enforced this distinction: applications could net inquire the size of the
screen, for example, and adapt themsclves accordingly.

N The resulting principle advantage is absolute device independence and portability, which is vital for the

P reusc ol software with rapidly-changing workstation hardware. Concern for the portability of the prototype ‘
' saved reimplementing most of the modules described in Scction 4.1.1 for new devices, such as the Sun-2

frame buffer. The principle disadvantage is that customization is made more difficult. Scction 5.6 discussed

when customization by both uscrs and programmers is desirable, but also mentioned rcasons not to allow

arbitrary customization.

7.3 Transparent Distribution

!
A el o ofon o SN

Although distributed graphics is possiblc with the SDF approach. it still may not always be desirable. For
cxample, in many cases running the benchmarks locally was faster than running them distributed.
Unfortunately, for the rcasons given in 1.2.2, it is not always possible to run all applications on the
i workstation. Even if the nccessary resources are available as an option for the workstations, they arc typically
‘ too cxpensive for widespread usc. In other words, cven with today's advanced hardware, we still need larger
g virtual and physical memorics, and faster processors, at lower prices.

o

PRI

~ ‘The protocol used for defining objects (the VG'TP) was extended transparently across networks using
\ several transport protocols, described in Scction 4.3.5. "The same source program can be compiled and linked
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B4

i . .

: - for any of a number of cnvironments, and the same binary can be accessed through three different transport
a' protocols. Distribution allows applications to run on the best suited computational resource, and use multiple
- resources to achieve concurrency. These programs were actually used, so performance constraints were
o stringent. Results such as those in Table 6-6 show that distributed operation was often faster than local
o opcration.

.

o,

.-"-.

o .

7.4 Techniques to Improve Performance

[N The tables in Chapter 6 show that VG'TS performance is close to the best possible speed. In the best case,
i4 the VG'I'S can give much better response than systems that do not retain any information on the structure of
2 the image, or allow for concurrent operation. More instrumentation of applications would provide uscful
oy information, but is beyond the scope of this thesis. The mcasurements presented in Chapter 6 already
v indicate sevcral ways that performance can be improved.

- 7.4.1 Protocol Design Techniques

)
::; Once the decision to distribute is made, a more subjective decision is what and when to distribute. In our
= cxperience, a few simple operations and applications can be done locally, such as text and illustration editors,
| and the resulting average performance is adequate. The simple but powcrful modecling facilitics provided by
. the VG'T'S allow this short circuiting.

*

The use of Structured Display Files also means that once objects arc defined, instances of them can appear
y or disappcar with a very small amount of communication. ‘This makes the protocols very insensitive to
. nctwork bandwidth, as shown in Tables 6-14 and 6-15. Since delay causcs more restrictions than bandwidth,

many simple opcrations should be batched together for each interaction. Return values should also be
climinated whencver possible to increase concurrency by allowing pipclining to occur.  Although direct
3 quantitative comparisons could not be made between the factors affecting performance, batching ccrlamly has
- a very important effect.
e

- 7.4.2 Software Structuring Techniques

. Onc interesting rule of design learned from the VGTS implementation expericnce was to use software

» structuring mechanisms only for the appropriate purpose:

: e Use scparate processes where scparate threads of control arc needed, otherwisc use one process.
5 For examplc, the main part of the VG'I'S consists of many modules but only one process. )
. e Usc tcams (complete address spaces) for programs that.should be exccuted as a unit. Partitioning
: \ the VG'I'S into scparate teams caused a great increase in memory consumption, duc to the

conmon library functions.

o Use modules for parts of a program that can be scparatcly compiled. A dircct procedure call
interface was still faster than other kinds of communication.

L

'\\

.':'c Much performance can be lost if onc of these partitioning mechanisms is used improperly. Even on a system
. like V where message passing is fast, it is still stow compared to a procedure call. In particular, Table 6-9
! shows that the drawing ratc can approach onc item per millisccond, which is about the samc time it takes to
s perform a message Send/Receive/Reply cycle. ‘Thus cach message should cause many lower-level actions

. instcad of just ong, reiterating the importance of batching.

§
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7.4.3 internal Performance Tuning Techniques

Once hardware and protocol decisions are made, performance can be improved by using standard software
tuning techniques such as inner loop optimization and increasing buffer sizes and blocking factors. In fact,
rcasonable performance can be obtained using the standard transport protocols compared in Table 6-1,
without resorting (o special-purpose protocols and incurring all the problems of being non-standard. On the
other hand. the usc of structure and proper batching and buffering strategics must be done at cvery level, to
avoid botticnecks.

7.5 What Can be Learned

In light of the VG1'S expericnce, we can cvaluate some aspects that were later detcrmined to be
unsuccessful, for the benefit of future designers:

e Ihe declarative nature of the VGTP and lack of a simplified interface library discouraged
apptication programmecrs accustomed to more proccdural graphics systems.

e Application programs dcvcloped their own conventions since therc were few common uscr-
interface librarics.

e Encoding graphical information in thc same strcam as text at the lowest level did not allow
redirection of graphics commands into a file or background graphics programs.

e The lack of raster opcerations in the programmer's interface discouraged the usc of the VGTS for
imagc processing applications.

e Scveral minor device-dependencics in the implementation were not made apparent until ports
were actually attempted, duc to lack of a well-specified device interface.

e The close coupling of the view manager to the rest of the VGTS dlscouragcd attempts at
customization through uscr profiles.

Most of these problems can be casily overcome by the work described in the next section.

7.6 More Open Questions

The VGTS effort raiscd more questions than it answered. The following is certainly not an ¢xhaustive list,
but it should give an overview of possible future topics in this area.

7.6.1 Integration with Editor

Onc uscful function in many window systems is the ability to select text (or other data) from one place and
stuff it into another. Due to the simple structure of text, this would be relatively casy to add for clients using
the byte-strcam terminal cmulation interface.  For advanced graphical objects. SDF and higher-level
interfaces could be used. Unfortunately this requires common data representations at the applications level,
beyond that with which the current VG'I'S prototype is concerned. Since some performance and flexibility is
alrcady lost by enforcing the level used by the VG'T'S, getting applications to agree on even higher levels could
be quite difficult. On the other hand, there arc many potential benefits from cven higher levels of
standardization.
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- 7.6.2 Handling of Attributes
‘ v“; .

- The VGTS used a limited number of attributes for its primitives, most stored as a small integer used as a
table index to get the actual value. This approach, similar to bundled attributes of GKS, has proven to be
N simple yct powerful. However, in the VGTS most valucs are predefined at compile-time; they should be

" dynamically dcfincd at run-time. For example, for text fonts the DefineFont function returns an attribute to
,‘ be used in subscquent Text items. Similar functions should be available to dcfine colors, fill patterns, and

> line styles.

N
» In keeping with the declarative approach of the VGTS, cach item has its attributes explicitly specified. For
. cxample, if a symbol contains 500 blue lincs, then cach line contains the information that its color is blue.
o This is in contrast to the approach taken by traditional graphics packages. which would have a command to
N sct the current line color to bluc and then draw 500 lincs.  Although the traditional approach requires
T additional statc during interpretation of the SDF, it would allow the inheritance of attributes from containing

} cnvironments. An opcen issuc is the value of this inhcritance capability.
[ 7.6.3 Other Interfaces -

:::: If VGTS allowed inheritance of attributes, then it could support an interface compatible with GKS. The
o application could still take advantage of the structuring capabilitics of the VG'TS if the interface is upward-
( compatible with GKS, in the manncr of Stcinhart [130]. Such a rcdesign is in progress at the time of this
M writing.

S5 .

a5 Other virtual terminal emulators could provide, for example, NAPLPS virtual terminals as another possible
::-:: interface. These interfaces could be implemented as an alternative library package, retaining the current

"> message interface. A new message interface could be designed, with the conversion to byte-strcams done in
. the TELNET programs. The relation between the V-System concept of file instances and VG'T'S objects such
; & as SDF, YGT, and VGT group could be made cleancr.

B %
0T

3-; 7.6.4 Porting the Implementation
J At the time of this writing, although two totally incompatible frame buffers are supported, the VGTS has
- not yct been fully ported to another graphics device besides SUN workstations.  Many potential graphics
"_Q: devices were cither too cexpensive or provide too low a performance level to adequately support an
,-'_: implemcntation of the VGTS. A port is currently in progress to the VAXStation, which should prove that the
o implementation is independent of processor architecture as well as graphics architecture.
<
4 7.6.5 Multiple View Surfaces
uj:} Another aspect of the design never fully exploited was the use of multiple screens per workstation, A

- typical configuration might have a color screen for computer aided design, and a black and white screen for
o general textual interaction. Applications should run with no modifications on such a configuration. A natural
4 extension of the user interface (used on other systems with multiple view surfaces) would have one cursor for
3:: both screens. When the cursor is moved past an cdge on one screen, it appears on the edge of the adjacent
L7 screen.

3
:::',» Most of the current VGTS implementation could be used with multiple view surfaces. The internal data
1 structurcs for views could casily be augmented by a pointer to a frame buffer descriptor structure, containing
pey pointers to the primitive functions w operate on the particular frame buffer. “this approach is similar to the
- pixrect specification by SUN Microsystems [123). In fact, pixrect would be a good candidate for this layer,
-.':'
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werc it not proprictary to a single manufacturer. Another candidate would be one of the Virtual Device
Interface standards, or normalized device coordinates at a well-specified internal interface.

7.6.6 Extended Functionality

Since the VGTS cvolved in an environment rich in system programmers, there was no shortage of suggested
cnhancements, including three dimensional SDFs, color, floating-point, image processing, and general
coordinate transformations. Currently the few programs that usc floating point or three dimensions cxccute
on server hosts in batch mode, because our workstations do not have adequate numeric performance. The
batch programs convert to two-dimensional integer coordinates that are then displayed by the VG'T'S. Simple
animation is possible in the current implementation, by defining successive stages as symbols and then rapidly
changing between the symbols. Future floating point processors in workstations may make it possible to
absorb somc of these functions into the workstation’s viewing service.

A fourth dimension, time, could also be considered for actions like animation or rubber banding. One
approach would be to add graphics primitives that would cause changes to the screen, but not be stored in an
SDF. These would be similar to temporary (or non-retained) segments in the Core, but would conflict with
the declarative nature of the current design. More attractive would be to specify rubber banding or trajectory
as attributcs of objects.

7.6.7 View Adapting Objects

Onc principle advantage of the up-call approach taken by most object-oriented window systems is the
ability for graphical objects to adapt to their viewing cnvironment. For example, when a view becomes
narrower, document paragraphs could be reformated to break into correspondingly narrower lines. Similar
functionality could be added to the VGTS in scveral ways. The current VG'I'S includes a function to rcturn
the size specified by the user for a default view. This could be extended to allow querying the view for its size,
but requires some kind of asynchronous notification which would be hard to cleanly add to the architecture.
‘The notification could be done on the basis of VG'I's instcad views, since VG'I's are alrcady visible objects to
clicnts, and multiple views arc allowed per VG'I'. However, in the prototype a graphics VG'I' has no size, and
atext VG'T'is a fixed size once created.

A more promising approach is to specify the viewing constraints as additional attributes of the object. For
cxample, the current prototype implements “reference lines™. displayed as lines with text labels drawn near
the cdge of the views in which they appear. Thus the same object in the same VG'I” can appear differently in
different sized views. The key problem is to design a method of specifying these viewing constraints with
morc generality but retaining adequate performance at viewing time.,

7.6.8 View ManagerSeparation

Onc of the most requested arcas of customization was the view manager.  ‘The VGTS architectural
distinction between the application program’s interface and the user’s interface means that users should be
able to experiment with alternate or paramecterized view managers without affecting any application
programs. For cxample, tiled and overlapped viewports should both be provided. In addition, work nceds to
be donc to develop more advanced command interfaces on top of the VGTS.
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7.7 Final Evaluation

Even with the deficiencics noted in Scction 7.5, few other systems provide as powerful a sct of features on
cquivalent workstations. The VGTS approach is well-suited to environments under the following conditions:

1. Workstations can provide adequate uscr response without requiring performance extremely close
to hardware speeds. :

2. Computing resources much more powerful than workstations arc available across some kind of
network.

3. Portability and device independence is important due to a heterogencous or rapidly changing
hardwarc base.

4. Productivity of potential uscrs could be increased by providing multiple simultancous contexts.

5. Application programs dcal primarily with incremental changes or structured picturcs instcad of
producir.g images to be only viewed once.

As a result, the VGTS is in daily usc at Stanford and scveral other sites. Moreover, it has been valuable for
the performance measurements and design studics described here,
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o — Appendix A —
s,
e Glossary
'..' . .
o This work cncompasses three different subficlds of computer science:  Operating Systems, Networks, and
-~ Computer Graphics. Unfortunately some terms have different meanings in more than onc of these fields.
- This glossary should help to provide onc set of consistent definitions. Many of these definitions are adapted
L from the literature [161, 64, while others are particular to this work. Jor more details, refer to the references
\ provided in the bibliography or the text scction as indicated.
'-: ADIS A system developed by Robert Sproull at Xerox Palo Alto Rescarch Center [127] to allow an
o Interl.isp program running on a timeshared computer to perforin raster graphics operations
- on a workstation.
ANSI Amecrican National Standards Institute. In the United States such standards arc voluntary
_ only. Computer related standards can be obtained from the X3 Sccrctariat at the Computer
o and Business Equipment Manufacturers Association in Washington D, C.
N ARPA Advanced Rescarch Project Agency of the United States Departiment of Defense. An agency
o, that funds major computer scicnce rescarch projects, including the ARPANET, a nation-wide
- )
: computer nctwork [L06].
o APA All Points Addressable. IBM terminology for a bitmap raster graphics device.
j: Backend The part of a computer system (hardware or software) that docs not interact with a uscr. Itis
£ separated from interaction with the user by the front end. For hardware, backends can be ,
optimized for batch operation, favoring throughput over responsce time. For software, '
. requests are made from other programs or softwarc modules instcad of dircctly by the user.
" BceL Basic Cambridge Programming [.anguage. A very simple language with control structures
[ but no data structuring facilitics. '
- BitBlt Bit-boundary Bl.ock Transfer. The operation of moving blocks of bits from and to arbitrary
’ locations within computer words.
:: Bitgraph A terminal built and marketed by Bolt Beranck and Newman of Cambridge, Massachusctts,
) bascd on an MC68000 processor and a bitmap display.
- Bitmap A digital image memory containing a description of cach of the addressable pixcls in a raster
> display. "The color or intensity level of cach pixel is directly determined by the valuc of a sct
of bits in the bitmap.
: Blit A terminal built at Bell Laboratorics based on an MCG68000 processor and a bitmap ;
X display {72]. A reengineered version is being marketed under the name ‘I'cletype 5620, ‘The
3 screen management software supplied for the Blitis called 1ayers {105]. |
k BSp Byte Strcam Protocol. A transport protocol in the PUP Internctwork Architecture {19]. BSP s
- implements a reliable virtual circuit on top of the internet datagrams of the nctwork layer. :
- §
. C A programming language designed at Bell Laboratorics for the Unix operating system {71]. A
! The tanguage is above the level of assembier, but allows machine-dependent constructions h
) for low-level systems programs such as device drivers.

CAD Computer Aided Design. The application of computers to the design process.

i
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N
\:|
-~ CAGES Configurable Applications for Graphics Employing Satellites. A system developed at the
3 University of North Carolina that allowed a programmer to assign modules in interactive
2 graphics programs to one of two processors at load time [62]. The implementation used an
1BM 360/75 connccted to a DEC PDP-11/45 with 88K bytes of memory. Programs were
:t written in a subsct of PL/1.
L
3} Calcomp California Computer Corporation. An carly manufacturcr of computcr graphics output (pen
: g plotting) devices.
'.'" Cedar An cxperimental computing cnvironment developed at Xecrox Palo Alto Rescarch
N:j Center [46), using the language Mcsa [99] with extensions taken from Interl.isp [138].
_:i Clipping A process to insurc that an image lics within a certain (usually rectangular) boundary of
N visible space.
p .
CORE A graphics subroutine package specification developed in 1979 by the ACM SIGGRAPII
-ﬁ Graphics System Planning Committee [147).
N CPU Central Processing Unit. The part of a computer system that fetches and exccutes
f 1 instructions.
<
Cursor A special symbol used to specify a particular position on a screen.
23 Datagram A nctwork protocol in which cvery packet includes a full address and is routcd scparately
'_t‘f from all other packets. This is in contrast to virtual circuit nctworks in which addressing and
'{r‘ routing arc performed on a connection basis.
g
N DFS Distributed Filc System. A general concept (providing network transparent file access), and
in particular a project at the Xerox Palo Alto Rescarch Center to develop a distributed file
', system [134].
;,' Display File A data structurc uscd to gencrate an image. Foley and van Dam discuss the many possible
Ug) uscs for display files [56]. Alternately called display lists or display buffers.
- DISDB Device Independent Structure DataBase. A concept in the Lawrence Berkeley f.aboratorics
o Network Graphics System [24], similar to the Wiss of GKS. Application programs usc the
b ':». workstation-independent layer to create, modify, and delete information in the database,
}::- while the workstation-dependent layers read the structure information o update the displays.
" \..
;:: Dragging 'The translation of a selccted displayed object along a path specificd by a graphic input device.
‘ "This is a form of image transformation. ' 4
» Dorado A high-performance personal scientific computer built at Xerox PARC [75].
. Py . .
_} Dynabook A concept of a powerful portable personal computer system that could be used in education
X much like a notebook is currently being used (90].
18 :
= Emacs A screen display cditor that is cxtensible by using an interpreter for a powerful
;a‘ language [129]. ‘The original version was implemented in 1974 for the D¢ System-10 and
. DiCSystem-20 line of computers. ‘There arc now many versions for a varicty of machincs
T and opcrating systems.
. L}
. Escape A facility to access functions that arc normally not part of the interface specification.
q Ethernct A particular kind of local arca network that uscs carrier sense multiple access with collision }
LA detection.  ‘The official specification for the data link and physical layers was developed
:. jointly by Xcrox, Digital Equipment, and Intcl Corporations [44].
()
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Extent

Frame Buffer

Frontend

GKS

Hit Detection

lcoes

IKP

Inquire

InterLisp

IP

Iptn

IRis

ISO

Kcystroke

l.aycrs

I.RG

Mainframe

Mbyte

MC68000
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Also called the bounding box. The smallest orthogonal rectangle containing the object in
question. This is obtained by calculating the maximum and minimum coordinates of the
objects along cach axis.

The digital memory uscd to store the bitmap in a raster display.

The part of a computcer system that deals with the user. The frontend should be optimized
for fast response time, with longer operations made part of the backend.

Graphical Kerncl System. A standard graphics package definition adopted by the
International Standards Organization [64] and the American National Standards Institute.

‘The operation of associating an event on a graphics input device with an item in the display
list. 'This is the function of a Pick dcvice.

InterCOnnected Processor System. A graphics system developed at Brown University to
dynamically distributc parts of an application program between two processors [97, 146, 128],
an IBM 360/67 and a Mcta 4 with 64K bytes of memory and a 50K bits per sccond serial
conncction. A single application program written in the Algol-W language was uscd for
performance measurements.

Inter-Kernel Protocol. The protocol uscd in the V-System between kerncls to provide the
transparcncy of message passing.

Operations that retuen information from the graphics system.

An cxperimental computing environment developed at Xcrox Palo Alto Rescarch Center,
based on a form of the Lisp language [138]. 'The InterLisp system has been ported to several
different computing environments, from personal computers to timesharing systems.

Internct Protocol [106). A nctwork-level protocol used in the ARPANET.

Internct Protocol TelNet.  The V-System program that allows a user to have a terminal
scssion on a remote server host.

Intcgratcd Raster Imaging System. A high-performance color graphics workstation
developed at Stanford University [39]), and now marketed by Silicon Graphics, Inc. of
Mountain View California.

International Standards Organization.

One user action, such as pressing a key on a keyboard. Used to model the psychology of
human-computer interaction [26).

A softwarc system developed for the Blit terminal developed by Bell Laboratorics [105).

I caring Rescarch Group. ‘The group that developed the Smalltalk language; called the
Software Concepts Group since 1981,

A very large and expensive computer, typically purchased by a group and maintained in a
computer room.,

Mcgabyte. The twenticth power of two, number of bytes, usually referring to computer
memory. Actual number is 1048576, significantly larger than one Million,

A currently popular microprocessor produced by Motorola Corporation [100]. It is a 32 bit
architecture [69), with scveral different implementations.  Unfortunately this name was used
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AN
’ [} N . . » . » - »
';-‘ for both the architecturc and the first implementation (a 16 bit implementation with 23
> address bits).
) Mesa A languagc developed at Xcrox PARC for writing systems programs, Mcsa supports systems
R of separate modules with controlled sharing of information. ‘The basic Mesa language has
:;: been extended in the Cedar experimental programming cnvironment [46).
N Mhz McgaHert7.. One million cycles per second. Onc paramcter of microcomputer performance
‘- is the clock speed.
{ Mips Miltion Instructions Per Sccond. A common (but inaccuratc) measure of computer system
A performance.
R,
! { Mouse A graphics input device that operates by sensing relative position changes when traveling
i over a flat surfacc [50].
. Mux Multiplexor. A device which mediates between several entitics all wishing to use a common
X resource.
..x N
¥ NABTS North Amecrican Broadcast ‘I'cletext Specification [11).
‘ NAPLPS North American Presentation [.cvel Protocol Syntax [6).
.L NDC Normalized Device Coordinates. A very low-lcvel but resolution independent coordinate
: system. For cxample, the coordinates of the view surface as floating point numbers ranging
, 2 from zcro to onc with (0,0) the lower left corner and (1,1) the upper right.
':3 NGP Network Graphics Protocol. The transport layer protocol uscd to communicate between a
e workstation and the system running a remote graphics application.
- NGS Network Graphics System. Designed at the Lawrence Berkcley Laboratory [25], and partially
. implemented [24). _
o
_’ NLS oN-Linc System. A software system devcloped at SRI [49) that used computers with graphics
- workstation to augment the abilitics of knowledge workers. It i now marketed by T'ymceshare
Corporation.
'~ NMos N-channcl Mctal Oxide Silicon. A process for making very large scale integrated circuits [93).
o NVT Network Virtual Terminal. A concept originally developed for long-haul networks [162], to
;_ casc the conncction of a varicty of rcal terminals to a varicty of computer systems without
; having to support all possible combinations. )
;. PARC ‘The Xerox Palo Alto Research Center.
T
- Pel IBM terminology for Pixel.
)
? Perq A workstation built by ‘Three Rivers Corporation [144).
,_ PINGs Programmer's Hicrarchical Interface to the Graphics System. A draft standard for a graphics
: package with hicrarchical scginent structure [4].
[
. Pick A graphical input cvent which rcturns the identification of an item within a display file,
2 Pilot An opcrating system for workstations devcloped at Xcrox PARC, written in the Mesa
- language and uscd as the basis for the Xcrox Development Environment [160).
-
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3
% Pixel Picture Element. The smallest display arca on a raster display surface whosc characteristics
::-4' can be controlicd independently of its neighbors.
¥
) Pixrect A layer in the graphics architecture of SUN Microsystems Inc. [123].
'kf Pop-up A typc of menu that only appears when a choice must be made.
;
A2 Pty Pscudo-terminal.  An operating system object that behaves as a terminal on onc side, but
. communicates to a program (typically a server TELNET) on the other side.
‘f Raster A rcctangular array of pixcls. A raster display is one that use an array of pixcls to producc the
N image, in contrast to a scrics of lincs, for example.
), .
* RasterOp A Raster Operation. One of the many bit-oriented operations between one two bit-arrays
N, producing another bit-array [103).
RPC Remote Procedure Call. An attempt to preserve the semantics of local procedure calls across
o a nctwork, usually donc as an extension to a compiler [102].
1§ RS-232 A Recommended Standard 232 of the Electronics Industries Association. Used to connect
4 most low to medium speed terminals to computers. The communication is full-duplex using
' twisted pairs between two points, over short distances. A functionally similar interface used
{ outside the United States is cCIr specification V24.
™ RTP Rendez-vous and Termination Protocol. Part of the PUP Internctwork Architecture [19],
Y uscd to sct up and terminate byte stream protocol connections.
s .
o Rubber Banding
™ An interactive technique that moves the common vertex of one or more objects such as lines
. whilc the other end points remain fixed.
A%
K. Scan Conversion » :
.; "I'he process of converting an image delined in terms of graphical objects into a raster (array
: of pixcls).
Screen Coordinates
A Device dependent coordinates, usually integer raster units. Only the lowest-level device
v driver uses this coordinate system.
,, Scrolling Continuous vertical (or horizontal) movement of display clements within a viewport. As new
{ objects appear at onc cdge (such as lines of text along the bottom), old objects disappear at
. the opposite cdge.
>
3 SDF Structurcd Display File. A dirccted, acyclic graph of items, cach of which is cither a primitive
) item or a symbol, which is a list of other items. SDIs are manipulated via the VG'TP, which
o is described in Section 3.4,
Scgment An ordered collection of output primitives defining an image.
-, SIGGRAPII Association for Computing Machincry Special Interest Group on computer Graphics.
‘ Smalltalk A languagc and system developed at the Xcrox Learning Rescarch Group, now known as the
Software Concepts Group 58]
, SUN Stanford University Network. Also applics to a particular workstation, a trademark of SUN
. Microsystemis Incorporated,
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A list of graphical items grouped together and given a name. This name can be uscd to add
instances of the symbol to other symbols, producing levels of structure in an SDF.

Transmission Control Protocol. A transport protocol in the ARPA protocol architecture [106).

A protocol to allow remotc logins [107].

A timesharing system from Digital Equipment Corporation for the DliCSystcm-ZO line of
computers.

A portable timesharing system developed by AT&T Bell 1aboratories in the carly 1970s [111].

The human cnd-user of a computer system or sct of software. ‘Thus the user interface deals
with the person trying to use the systemn to get work done, in contrast to the programiner
interface which is used by the devcloper.

Virtual Address eXtension. A linc of computers built by Digital Equipment Corporation
with a 32 bit architecture [45].

Virtual Device Interface. A proposed standard interface between a graphics package and a
device driver, as shown in Figure 2-2.

Virtual Device Metafile. A mcthod for storing graphics information on a file. Figure 2-2
illustrates how VDM fits into the architecturc of standard graphics packages.

Virtual Graphics Terminal. A concept of the VGTS which combines advantages of
traditional graphics packages and window systems within the framework of a virtual terminal
management system. Scction 3.4.2 defines the scmantics of a VGT, which is associated with
one itemn in an SDF (usually a symbol).

Virtual Graphics Terminal Protocol. The protocol uscd between the VGTS and a client.
Described in Scction 3.4,

A mapping of a virtual terminal onto a physical output device. Default views are provided by
the application programmer, whilc the user creates and manipulates views with the View
Manager, as described in Scction 4.4,

A rectangular arca of a physical output device which presents the contents of a window. ‘The
VGTS prototype implementation supports potentially overlapping viewports, so the actual
arcas of the screen that are visible for cach viewport are called subviewports. Scction 4.2.1
describes this process in more detail.

A small rcal-time portable opcrating system kernel [31], descended from “Thoth [29] and
Verex (30].

Very Large Scale Integration [93].  VI.SI is both the reason why graphics workstations are
becoming cconomical, and one of the major users of those workstations.

Virtual Memory System. The operating system supplied by Digital Equipment Corporation
for the VAX computer [45].

A program running within some predefined operating system that provides services such as
file access and remote execution to clients in a V-System [31),

A system of distributed scrvers and a synchronous message-based kernel developed by the
Distributed Systems Group of Stanford University [17].
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vT Virtual Terminal. A concept originally developed for long-haul nctworks [162], to casc the
connection of a varicty of real terminals to a varicty of computer systems without having to
support all possible combinations.

VIMS Virtual Terminal Management System. An agent in the Rochester Intelligent Gateway which
managed terminal interaction [77),

WDSS Workstation Dependent Segment Storage. A concept used in GKS [64].

Wiss Workstation Independent Segment Storage. A concept used in GKS [64].

Window That part of the virtual (or world) coordinate spacc that is being displayed in a particular

view. This is the standard graphics package terminology [147], in contrast to the “window
system™ terminology (sce Chapter 2) which uses the term to refer to the view itsclf.

Woodstock ~ A statcless file scrver project at Xcrox PARC[137). One of the first experiments at
partitioning betwecn an application program and its disk.

World Coordinates
The coordinate system of the application program’s modcl of an object. The input to the
viewing pipelinc in most graphics systcms [147].

Workstation A computing resource dedicated to a user. This may range from a small, fixcd-function
terminal to a large sclf-contained personal computer.

Zoom Changing the scaling factor mapping from virtual coordinates to physical coordinates to give
the appcarance of having moved towards or away from the cbject of interest.
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A SHORT VGTS SAMPLE PROGRAM

— Appendix B —
A Short VGTS Sample Program

The following program has actually been run both under Unix and under the V system executive. The
#ifdef Vsystem dircctives allow the programmer to conditionally compile code for onc environment or
the other. It also must be compiled with the appropriate compiler and linked with the correct library. It first
creates an SDF and VG, then displays 100 random objects of various kinds.

/* ‘

* test.c - a test of the remote VGTS implementation
* Bill Nowicki September 1982 '
*/

# include <Vgts.h>
# include <Vio.h>

# define Objects 100 /* number of objects */
short sdf, vgt;

Quit()
{
DeleteVGT(vgt,1):
DeleteSDF(sdf);
ResetTTY();
exit();

}

main()

int i;
short item;
long start, end;

# ifndef Vsystem
printf("Remote VGTS test program\n");
# else Vsystem
printf("VGTS test program\n");
# endif Vsystem
fflush(stdout);
GetTTY():
sdf = CreateSDF();
DefineSymbol( sdf, 1, "test" );
AddItem( sdf, 2, 4, 40, 4, 60, NM, SDF_FILLED_RECTANGLE, NULL ):
EndSymbol1( sdf, 1, 0 );
vgt = CreateVGT(sdf, GRAPHICS+ZOOMABLE, 1, "random objects” ):
DefaultView(vgt, 500, 320, O, O, 0, 0, O, 0);
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106 PARTITIONING OF FUNCTION IN A DISTRIBUTED GRAPHICS SYSTEM

time(&start);
for (i=12; i<Objects; i++ )
{

short x = Random( -2, 155);
short y = Random( -10, 169);
short top = y + Random{( 6, 100 );
short right = x + Random{ 4, 120 ):
short layer Random( NM, NG );

EditSymbol(sdf, 1);
Deleteltem( sdf, i-10);
switch (Random(1, 6) )

{
case 1:
AddItem( sdf, i, x, right, y, top, layer,
' SDF_FILLED_RECTANGLE, NULL );
break; '
case 2:
AddItem( sdf, i, x, x+1000, y, y+16, 0, SDF_SIMPLE_TEXT,
"Here is some simple text” );
break;
case 3:
AddItem({ sdf, i, x, right, y, y+1, 0,
SOF_HORIZONTAL_LINE, NULL );
break;
case 4:
AddItem( sdf, i, x, x+1, y, top, O,
SOF_VERTICAL_LINE, NULL );
break;
case 5:
AddItem( sdf, i, x, right, y, top, 0,
SOF_GENERAL_LINE, NULL );
break;
case 6:

AddItem( sdf, i, x, right, top, y, O,
SDF_GENERAL_LINE, NULL );
break;

}
EndSymbol( sdf, 1, vgt );:
}

time(&end);

if (end==start) end = start+t;

printf("%d objects in %d seconds, or %d objects/second\r\n"
Objects, end-start, Objects/(end-start));

printf("Donel\r\n"});

Quit();
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Random( first, last ) 3
( -
/* 1
* generates a random number
* between "first” and "last" inclusive.
*/
int value = rand()/2;
value %= (last - first + 1);
value += first;
return(value);
} ;
/
r
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f — Appendix C —
2 Hlstory of the Implementation

‘:j-, The SDF manager was originally written by Charles “Rocky” Rhodcs, mcorporatcd into the Yale VLSI
. layout program by ‘Tom Davis [42). and converted to usc the V kernel by Marvin 'Theimer during the summer
o% of 1982. Most of the conversion into the VG'T'S by the author was done in latc summer and fall of 1982, with
L significant cvents as follows:

\

AN July, 1982 The Yale program was converted to run under the V kernel,

he
- August 27, 1982 The SDIF manager opcrations could be called via C function calls from the Yale
,f program, but was a scparatc module. The window manager and related drawing
b " . routines could be linked together with any clicnt wanting to use them.

. September 1, 1982 A terminal program was written to combine standard terminal emulation functions, a
- PUP User TELNET implementation, and the SDF manager functions in one program.
e This was based on an carlicr implementation of PUP Uscr TELNET by the author.
'::‘ Scptember 18, 1982 The terminal program was augmented to decode the escape sequences, so that a

. program running on a remote host could manipulate an SDF. A sct of “stub” functions
( was written that allowed programs to run cither on the SUN directly or on any host
o« rcachable through a TELNET connection.

o

N: October 2, 1982 Yale was ported to the VAX, using the stub routines to simulate the local VGTS
K. cnvironment. A few remote test programs were written at this time, including the
- program in Appendix B.

- November 1, 1982 Overlapping viewports added. Arbitrary lines were also added and debugged. Another
S test program to display wirc-frame drawings projected from three dimcnsions was
1) written,

2

M January 1983 A simplc illustration cditor was written by the author to cdit diagrams for papers on the

VGTS. All of the diagrams in this thesis are produced with this program.

‘o February 17,1983 The text editor Ved operated under the VG'T'S along with other exccutives.
N
K~ March §, 1983 Graphics applications, including previously mentioned test programs, and both the
i distributed and local versions of the Yale program were operated under the VGTS
' and coexisted with cach other. The VGTS/Exccutive combination was installed for
s production usc by other members of the Distributed Systems Group.

<

T March, 1983 The abil** to display text in arbitrary fonts was added, in addition to the special
}; fixed-wiath font.
N April §, 1983 Continuous mouse monitoring added, so rcal-time feedback was possible. With these
Y ncw additions to the illustrator program, and the Ved cditor, usability was greatly
“ increased. ‘T'he view manager also provided feedback when positioning viewports.
: April 20, 1983 Raster objects were added. and a test program which displays half-tonce photographic
[ images was written. Another test program successfully displayed a databasc containing

. a map of the world.
S May, 1983 Filled polygons and splincs were added, and a drawing cditor program was developed
' to test them.

\
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July, 1983

September, 1983

November, 1983
July, 1984
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Banncrs added and integrated into the exccutive. Screen saver added to turn off SUN
video if nothing has happened in the last (en minutes. View manager menus were
reorganized.

Addcd linc editor and intcgrated into the cxecutive. Removed line cditors from most
application programs. Addcd directory protocol support.

Split off exec server instcad of linking directly to executives.

[nitial port to the SUN-2 frame buffer. Only simple text and rectangle objects worked
at this point. Vicw manager shortcuts instatled.

Other people who have contributed to the VGTS implementation were as follows:

P. M. Bothner

K. P. Brooks

D. R. Cheriton

T. R. Davis

J. C. Dunwoody

R. S. Finlayson
L. Gass

D. R. Kaclbling
K. A. Lantz

T. P. Mann
J. 1. Pallas

V. R. Pratt
C.C. Rhodcs
M. M. Theimer

Primitives for display of rasters and arbitrary fonts, on both SUN-1 and SUN-2 frame
buffers.

Continuous mouse monitoring, arc and fast filled polygons, design of GKS compatibility
package.

Design of 170 protocol, and the V kernel; Co-principal investigator for the Distributed
Systems Group.

Original application, which was integrated with SDF management and display routines, as
well as original view manager in the YALE program.

Automatic pagination of pad output, simplc terminal server, mouse text sclection for line
editor. :

Port to the SUN-2 frame buffer, including most of the graphics primitives for the SUN-2.
Hit detection functions (FindSelectedObjeci). _
Filled splines and polygons, and an application program that uscs them (Dr aw).

Virtual Terminal concept, overall architecture of uscr interface; rescarch supervisor, and
Co-principal investigator for the Distributed Systems Group.

V-Kcrnel support for frame buffer access, many minor bug fixces in related software,

Improved cursor visibility, somc minor bug fixes, and short cuts to get to view
management functions.

Fast vector drawing function implementation.
Initial SDIF management functions, partial port to the Iris.

Conversion of YALE to the V-System, and the internet server.,

Undoubtedly there are others who have helped in one way or another, but these are the major contributors.,

ST A

LIt

[ B AN e
TR LA Sl

e T Ve
3 D)

b i ek el el




ralatt

a 1 LL".

o ¥

Pl B P RS

DETAILED EXPERIMENTAL RESULTS 111

— Appendix D —
Detailed Experimental Resulits

This appendix contains the specific results from benchmarks and instrumentation discussed in Chapter 6.
There are three kinds of synthetic benchmarks: text, graphics, and structure. Measurements were also taken
from the illustration cditor, using the illustrations in this thesis as data. Within cach kind of benchmark the
results are grouped first by workstation type, which appcars in the first column. The following workstations
were used for the tests:

Sun-1

Sun-1.5

Sun-2upg

Sun-2

Cadlinc

This was the first model of workstation markcted as model 100 by Sun Microsystems, Inc. of
Mountain View, California. 1t is connected to experimental (3 Mbit/sccond) Ethernct with a
controller built by Sun Microsystems. [t contains a 10Mhz MC68000 processor, with IMbyte
of memory accessed with no wait siates. Keyboard and optical mousc arc polled by software.

This was the first upgrade to thc Sun-1 by Sun Microsystems, called model 100U. It is
connccted to standard 10 Mbit/sccond Ethernet with a controlier made by 3Com
Corporation, also of Mountain View, California. It contains a 10Mhz MC68010 processor,
with 2Mbytc of memory accessed with wait states, with a resulting cffective speed of about
8Mhz. Keyboard and optical mousc are polled by software,

This was another upgrade to the same physical workstation madc by Sun Microsystems, also
called model 2/100. It contains a 10Mhz MC68010 proccssor, with 2Mbyte of memory
accessed with no wait states. It is connected to standard 10 Mbit/sccond Ethernet with a
controller made by 3Com Corporation. Kcyboard and optical mouse are polled by software.
It is actually slightly slower on graphics than the Sun-1, probably duc to a different bus
arbitration circuit.

This was the sccond workstation product made by Sun Microsystems, called model 2/120. 1t
contains a 10Mhz MC68010 processor, with 2Mbyte of memory accessed with no wait states,
the same processor as the Sun-2upg, but a different graphics architecture. The screen bitmap
is larger than the previous Suns, but is addressed as lincar memory instcad of the clever
scheme of the Sun-1. This makes smaller operations much slower, while large opcerations
take about the same time. It is connected to standard 10 Mbit/sccond Ethernet with a
controller made by 3Com Corporation. Kcyboard and optical mouse arc connected by
RS232 serial lincs.

An older but similar workstation design, with an 8Mhz MC68000 processor. Only 512K
bytes of memory arc accessed with no wait states, and another 512K bytes arc available on the
Muiltibus. Keyboard and mechanical mouse are controlled by a dedicated microprocessor,
connected to the MC68000 through an RS232 scrial connection.
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The following scrver hosts were used in the experiments:

Diablo

Navajo

Whitney

Carmcl

Coyote

Gregorio

Pescadcero

ISI-A

ISI-H.

Camcelot

Parc-C

A Vax-11/780 running 4.1 Unix during experiments, with 4 Mbyte meinory, connected to
3Mbit/sccond Experimental Ethernet. Operated by the SUMEX project in the Stanford
University Mcdical Center.

A VAX-11/780 running 4.1 Unix during experiments, with 4 Mbytec memory, connccted to
IMbit/second Experimental Ethernet. Owned by the Stanford Numerical Analysis group
of the Computer Scicnce Department,

A Vax-11/780 running 4.1 Unix, with § Mbyte memory, connected to 3Mbit/sccond
Experimental Ethernet. Owned by the Robotics group of the Stanford Computer Science
Department.

A VAX-11/750 running 4.1 Unix during expcriments, with 2 Mbyte memory, connected to

IMbit/sccond Experimental Ethernet. Owned by the Stanford Computer Science
Dcpartment for file server development.

A VAX-11/750 running 4.2 Unix, with 2 Mbyte memory, connccted to both 3Mbit/second
Experimental Fthernet and 10Mbit/second Ethernet. Owned by the Robotics group of the
Stanford Computer Scicnce Department.

A Vax-11/750 running 4.2 Unix, with § Mbyte memory, connccted to both 3Mbit/second
Expcrimental Ethernet and 10Mbit/second Ethernct. Owned by the Distributed Systems
Group, and uscd for VAX opcrating system support, both the VAX V kernel post and Unix.

A VAX-11/750 running 4.2 Unix, with 6 Mbyte memory, connected to both 3Mbit/second
Experimental Ethernet and 10Mbit/sccond Ethernet. Owned by the Distributed Systems
Group, and uscd as the primary file server for V-System development.

A VAx-11/780 running 4.1 Unix, with 4 Mbyte memory, connected to the ARPANET,
located in the Information Scicnce Institute in Marina del Rey, California, about 500 miles
south of Stanford. Uscd for IntcrLisp support.

A VAX-11/750 running 4.2 Unix, with 2 Mbyte mcmory, conncected to the ARPANET, also
located in the Information Science institute. Used for Unix development.

A VAX-11/780 running 4.2 Unix, with 4 Mbytc mcmory, connected to 3Mbit/second
Experimental Ethernet. 1.ocated in the Center for Educational Rescarch at Stanford, and
operated by the L.ow Overhead Timesharing System (LOTS).

A VAX-117785 running 4.2 Unix, with 8 Mbyte memory, connected to the ARPANET.
Located in and owned by the Xerox Palo Alto Rescarch Center, Used as a mail gateway.
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The next column gives the protocols uscd in the experiments. These were discussed at the begining of
Chapter 6, and arc illustrated in Figures 6-1 and 6-2.

Local

VAX-IKP

SUN-1Kp

Pup
PUPGW
P
IPGW
A-lp

nnnn

DTN L OL LAY PER AL PO SU S T L L ol *."‘"‘-‘\
Ly NS

The application runs on the same workstation that is used for display. Communication is by
local V kernel messages.

The V-System 170 protocol. using a message protocol implemented dircctly above the data-link
layer of Ethernet. ‘The application runs on a VAX UNIX system and communicates via pipes to a
Unix program that simulates a V-kernel by sending kernel packets on the Ethernet.

The application runs on apother workstation, and sends V messages directly using the Inter-
Kernel Protocol.

The PUP Byte Strcam Protocol on a directly connected Ethernet.

‘The PUP Byte Strcam Protocol through one or more gateways to another Ethernet.
Internct Protocol on a directly connected Ethernet,

Internct Protocol through onc or more gateways.

Internet Protocol, over an Ethernct to a PDP-11/23 acting as a gateway to the ARPANET.

A four digit number, one of 1200, 2400, 4800, or 9600, rcfers to the baud rate of a VAX terminal
port that was attached to an RS-232 port on the workstation, A simple V-System program
allowed normal UNIX tcrminal scssions on this terminal port. :
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D.1 Text Benchmark
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The text benchmark was primarily a program called tt ime, originally written by Peter Eichenberger. This
program simply printed characters as quickly as possible until stopped by an interrupt or for a given amount
of time (two minutcs was the time used in these experiments). The columns are: workstation type, server
host, protocol, and character ratc. All numbers arc given as characters per sccond through all layers of
software including the terminal emulator, except in the local case where the rates are broken down into draw
and construction times. For these experiments, which were done only with the V protocols, an option of the
vect ime program was used.

Sun-1

Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1
Sun-1

Sun-2

Sun-2

Sun-2upg

Sun-2upg
Sun-2upg
Sun-2upg

Sun-1

780 4. (Diablo)
780 4.1 (Diablo)
780 4.1 (Navajo)
780 4.1 (Navajo)
780 4.1 (Whitney)
780 4.1 (Whitncy)
780 4.1 (Whitncy)
750 4.2 (Coyote)
750 4.2 (Coyote)
750 4.2 (Coyetc)
750 4.1 (Carmel)
750 4.1 (Carmel)
750 4.1 (Carmcl)
750 4.2 {Gregorio)
750 4.2 (I1S1-H)
780 4.1 (ISI-A)

750 4.2 (Gregorio)

780 4.1 (IS1-A)
785 4.2 (Parc-C)
Another Sun-2

Draw 20711

Construct 7286
Page 5387
Scroll 448
VAX-IKP 4157
P 3911
P 4139
Pur 1566
VAX-IKP - 4257
P 4344
Pup 1638
VAX-IKP 3628
1P 3521
Pup 2030
VAX-IKP 4078
P 2299
Pup 1371
P 1544
A-IP 2170
A-IP 1911
Draw 10111
Construct 6037
Page 3653
Scroll 201
P 4409
Draw 18193
Construct 6702
Page 4776
Scroll 354
A-IP 2200
A-IP 2317
Draw 18916
Construct y 4067
Page 3342
Scroll 386




Sun-2upg Another Sun-1.5 Draw
. Construct

Page

Scroll

Draw
Construct
Page
Scroll

750 4.2 (Coyote) VAX-IKP

750 4.2 (Coyote) P

750 4.2 (Gregorio) VAX-IKP

750 4.2 (Gregorio) P

7804.1 (ISI-A) A-IP

Another Sun-2 Draw
Construct
Page
Scroll

Another Sun-1.5 Draw
Construct’
Page,
Scroll

Cadlinc Draw
Construct
Page
Scroll
Cadlinc 780 4.1 (Diablo) VAX-IKP
Cadlinc 780 4.1 (Diablo) IP
Cadlinc 780 4.1 (Navajo) IP
Cadlinc 780 4.1 (Navajo) Pup
Cadlinc 780 4.1 (Whitney) VAX-IKP
Cadlinc 780 4.1 (Whitncy) P
Cadlinc 780 4.1 (Whitncy) Pup
Cadiinc 750 4.2 (Coyotc) VAX-IKP
Cadlinc 750 4.2 (Coyote) P
Cadlinc 750 4.2 (Coyote) Pup
Cadlinc 750 4.1 (Carmel) VAX-IKP
Cadlinc 7504.1 (Carmel) . . P
Cadlinc 7504.1 (Carmel) Pup
Cadlinc 750 4.2 (Gregorio) IPGW
Cadlinc 750 4.2 (Gregorio) PuPGW
Cadlinc 780 4.1 (ISI-A) A-1P

Table D-1;: Dctailed text results
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D.2 Vector Graphics Benchmark

The vectime program was uscd to test simple vector graphics performance. The columns in the results
below are: workstation type, server host, protocol, test name, and vector rate.  All numbers are in vectors per
sccond. The program drew a fully-conncct 36-agon, and was bascd on a similar program written by Professor
Vaughan Praut. ‘T'he calculations for the points of the polygon were done once before timing began. For the
Batch test the polygon was crased and displayed ten times, with the results computed over all ten trials. The
benchmark program reported the standard deviation for the trials. Runs with large deviations were repeated
on the assumption that transicnt cffects such as incoming computer mail or other background activity caused
these anomalous results.

For the Incremental test (noted below as “Add™) cach Add/tem call was preceded by an EditSymbol call and
followed by an EndSymbel call, to measurce the number of transactions per second. Since onc run of the
Incremental test typically took scveral minutes, these were only repeated once.  All cxperiments were
performed when timesharing load was low. ‘The last column gives the month and ycar the mcasurements
were taken.

Sun-1 Local Batch Draw 451 12-83
Create 485 12-83
Total 234 12-83
Sun-1 . Local Batch Draw 428 12-84
Create 450 12-84
. Total 219 12-84
Sun-1 780 4.1 (Diablo) 1PGW Batch Create 114 6-84
. Total 81 6-84
Sun-1 780 4.1 (Navajo) VAX-IKP Batch Create 508 12-83
. Total 185 12-83
Sun-1 780 4.1 (Navajo) 1P Batch | Create 162 12-83
Total 111 12-83
Sun-1 780 4.1 (Navajo) PUP Batch Ci. e 200 12-83
. Total 122 12-83
Sun-1 780 4.2 (Navajo) VAX-IKP Batch Create 180 12-84
Total 171 12-84
Sun-1 780 4.2 (Navajo) 1P Batch Create 387 12-84
Total 377 12-84
Sun-1 780 4.2 (Navajo) PUP Batch Create 222 12-84
Total 218 12-84
Sun-1 780 4.1 (Whitney) VAX-IKP Batch Create 396 12-83
Total 168 12-83
Sun-1 780 4.1 (Whitney) 1P Batch Create 168 12-83
Total 111 12-83
Sun-1 780 4.1 (Whitney) PUP Batch Create 207 12-83
Total 128 12-83
Sun-1 750 4.2 (Coyote) VAX-IKP Batch Create 160 12-83
Total 97 12-83 -
Sun-1 750 4.2 (Coyote) 1P Batch Create 136 12-83
. Total 93 12-83
Sun-1 750 4.2 (Coyote) PUP Batch Create 133 12-83
Total 91 12-83
Sun-1 750 4.1 (Carmel) VAX-IKP Batch Create 335 12-83
Total 155 12-83
Sun-1 750 4.1 (Carmel) 1P Batch Create 107 12-83
Total 81 12-83
Sun-1 750 4.1 (Carme}) PUP Batch Create 128 12-83
Total 80 12-83
Sun-1 750 4.2 (Gregorio) 1P Batch Create 220 12-84
Total 215 12-84
Sun-1 750 4.2 (Gregorio) PUP Batch Create 198 12-84
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Rl Total 195 12-84
oy Sun-1 780 4.1 (ISI-A) Ip Batch  Create 133 12-83
At Total 92 12-83
N Sun-1 750 4.2 (ISI-H) A-1P Batch Create 120 6-84
20 Total 73 6-84
RS Sun-1 780 4.2 (Camelot) IPGW Batch Create 154 6-84
o Total 100 6-84
" Sun-1 780 4.2 (Camelot) PUPGW Batch Create 156 6-84
‘ ;S Total 105 6-84
N Sun-1 Another Sun-1 Sun~1KP Batch Create 360 6-84
: - Total 192 6-84
.”a"_
o Sun-2 tocal Batch Draw 290 12-84
3 Create 468 12-84
3 : Total 179 12-84
“y Sun-2 750 4.2 (Gregorio) VAX-IKP Batch Create 372 11-84
L Total 345 11-84
Sun-2 750 4.2 (Gregorio) IP Batch Create 168 11-84
A Total 166 11-84
Sun-2 785 4.2 (Parc-C) A-IP Batch Create 155 11-84
S ‘ Total 14§ 11-84
"
ihs Sun-2upg Local Batch Draw 418 6-84 .
Create 4239 6-84
Total 214 6-84
At Sun-2upg Local Batch Draw - 406 = 12-84
by Create 446 12-84
o fotal 211 12-84
&5 Sun-2upg 780 4.1 (Navajo) IPGW Batch Create 149 6-84 .
o Total 101 6-44 '
3 Sun-2upg ,780 4.1 (Navajo) PUP Batch Create 167 6-84
Total 109 6-84
> Sun-2upg 750 4.2 (Gregoiio) VAX-IKP Batch Create 381 12-84
2ot Total 348 12-84
o Sun-2upg 750 4.2 (Gregorio) IpP Batch Create 229 12-84
oo Tota) 224 12-84
o Sun-2upg 750 4.2 (Gregorio) PUP Batch Create 204 12-84
A Total 198 12-84
. Sun-2upg 750 4.2 (Pescadero) 1P Batch Create 128 6-84
Total 90 6-84
“u Sun-2upg 780 4.2 (ISI-A) 1P Batch Create 134 9-84
v Total 93 9-84
~: Sun-2upg 750 4.2 (ISI-H) A-1P Batch Create 126 12-84
> Total 121 12-84
., Sun-2upg 785 4.2 (Parc-C) 1P Batch Create 159 12-84
K Total 144 12-84
. Sun-2upg Another Sun-2 Sun-IKP Batch Create 402 6-84
~. Total 204 6-84
- Sun-2upg Another Sun-2 Sun-1kP Batch Create 384 12-84
. Total 185 12-84
- Sun-2upg Another Sun-1.5 Sun-1KP Batch Create 360 6-84
Ty Total 192 6-84
%)
ey Sun-1.5 Local Batch Draw 339 3-84
LN Create 364 3-84
3 Total 176 3-84
:Q Sun-1.5 750 4.2 (Coyote) VAX-IKP Batch Create 445 3-84
A Total 145 3-84
Sun-1.5 750 4.2 (Coyote) 1P Batch Create 144 3-84
st Total 95 3-84
¥ Sun-1.5 750 4.2 (Gregorio) VAX-IKP Batch Create 453 3-84
X Tota) 146 3-84
=
\.
[
Y




T I TR W W

J"
!.|
) Sun-1.5 750 4.2 (Gregorio) 1P Batch Create 143 3-84
" . Total 90 3-84
Ly Sun-1.6 750 4.2 (Pescadero) VAX-IKP Batch Create 326 6-84
° Total 128 6-84
' Sun-1.5 750 4.2 (Pescadero) 1P Batch Create 129 6-84
2 Total 88 6-84
L Sun-1.5 750 4.2 (Pescadero) pPUP Batch Create 93 6-84
[T Total 68 6-84
o Sun-1.6 780 4.1 (ISI-A) A-1P  Batch Create 129 3-84
~ Total 85 3-84
. Sun-1.5 750 4.2 (ISI-H) A-IP Batch Create 125 6-84
Total 75 6-84
e Sun-1.5 Another Sun-2 Sun-IKP Batch Create 361 6-84
“ Total 175 6-84
O Sun-1.5 Another Sun-1.5 Sun-IKP Batch Create 322 6-84
. Total 165 6-84
.‘\.
W Cadlinc Local Batch Draw 340 12-83
- Create 369 12-83
o Total 177 12-83
N Cadlinc 780 4.1 (Diablo) VAX-IKP Batch' Create 422 12-83
X ) Total 152 12-83
y Cadlinc 780 4.1, (Diablo) P Batch Create 84 12-83
h . ' Total 61 12-83
:J Cadlinc 780 4.1 (Diablo) PUP Batch Create 129 12-83 .
- * . Total 82 12-83
L Cadlinc 780 4.1 (Navajo) VAX-IKP Batch Create 292 12-83
- Total 131 12-83
[~ Cadlinc 780 4.1 (Navajo) IP Batch Create 159 12-83
X Total 99 12-83
Cadiinc 780 4.1 (Navajo) PUP Batch Create 179 12-83
‘aa Total 107 12-83
fi. Cadlinc 780 4.1 (Whitney) VAX-IKP Batch Create 431 12-83
< Total 153 12-83.
b Cadlinc 780 4.1 (Whitney) IP Batch Create 140 12-83
e Total 92 12-83
- Cadlinc 780 4.1 (Whitney) PUP Batch Create 177 12-83
Total 106 12-83
T Cadlinc 750 4.2 (Coyote) VAX-IKP Batch Create 164 12-83
N Total 92 12-83
- Cadlinc 750 4.2 (Coyote) - 1P Batch Create 139  3-84
= Total 92 3-84
J Cadlinc 750 4.2 (Coyote) PUP Batch Create 132 12-83
i; Total 86 12-83
’ Cadtinc 750 4.1 (Carmel) VAX-IKP Batch Create 346 12-83
v Total 143 12-83 s
f- Cadlinc 750 4.1 (Carmel) PUP Batch Create 123 12-83
}{ Total 75 12-83
-, Cadiinc 750 4.2 (Gregorio) 1P Batch Create 146 3-84
. Total 91 J-84
- Cadlinc 750 4.2 (Gregorio) PUP Batch Create 121 3-84 Y
Total 82 3-84
iy Cadlinc 780 4.1 (ISI-A) A-1P Batch Create 133 12-83
& Total 88 12-83
X Cadlinc 750 4.2 (ISI-H) A-1P Batch Create 111 6-84
e Total 68 6-84
: Cadlinc Another Sun-1 Sun-1IKP Batch Create 249 6-84
AY Total 143 6-84
Ly _ o
4 Sun-1 Local Add Total 47.7 12-83
" Sun-1 Local Add  Total 62.2  12-84
> Sun-1 780 4.1 (Diablo) PUP Add Total 6.6 12-83
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2 Sun-1 780 4.2 (Navajo) VAX-IKP Add Total 62.7 12-84
‘3 Sun-1 780 4.2 (Navajo) 1P Add Total 81.6  12-84
?- Sun-1 780 4.2 (Navajo) PUP Add Total 59.0 12-84
o Sun-1 780 4.1 (Navajo) VAX-IKP Add Total 6.1 12-83
.- Sun-1 780 4.1 (Navajo) 1P Add Total 4.8 12-83
1 Sun-1 780 4.1 (Navajo) PUP Add Total 4.3 12-83
0: Sun-1 780 4.1 (Whitney) VAX-IKP Add Total 6.5 12-83
h Sun-1 780 4.1 (Whitney) 1P Add Total 4.9 12-83
“~ Sun-1 780 4.1 (Whitney) PUP Add Total 4.9 12-83
o Sun-1 750 4.2 (Coyote) IP Add Total 7.8 12-83
e Sun-1 750 4.1 (Carmel) VAX-IKP Add Total 4.6 12-83
! Sun-1 750 4.1 (Carmel) 1P Add Total 4.8 12-83
3 Sun-1 750 4.1 (Carmel) PUP Add Total 4.9 12-83
1o Sun-1 750 4.2 (Gregorio) Ip Add Total 86.6 12-84
- Sun-1 750 4.2 (Gregorio) PUP Add Total 54.5 12-84
3 Sun-1 780 4.1 (ISI-A) A-1IP Add Total 3.0 12-83
o Sun-1 780 4.2 (Camelot) IPGW Add Total 3.1 6-84
" Sun-1 780 4.2 (Camelot) PUPGW Add Total 2.9 6-84
Sun-1 Another Sun-1 Sun-IKP Add Total 9.0 6-84
]
L & Sun-2 Local Add Total 40.6 9-84
,j Sun-2 Local Add Total 61.5 11-84
' Sun-2 750 4.2 (Gregorio) VAX-IKP Add Total 81.7 11-84
QS Sun-2 750 4.2 (Pescadero) 1P Add Total 59.4 11-84
Sun-2 785 4.2 (Parc-C) A-IP Add Total 69.6 11-84
‘_ Sun-2 780 4.3 (Camelot) IPGW Add Total 84.0 12-84
- Sun-2upg Local  Add Tota) 42.0 6-84
. Sun-2upg Local Add Total 59.4 12-84
- Sun-2upg 750 4.2 (Gregorio) VAX-IKP Add Total 81.4 12-84
- Sun-2upg 750 4.2 (Gregorio) PUP Add Total 57.6 12-84
» Sun-2upg 750 4.2 (Gregorio) P Add Total 81.5 12-84
Sun-2upg 750 4.1 (Pescadero) IP Add Total 6.8 6-84
ia Sun-2upg 785 4.2 (Parc-C) A-IP Add Total 3.7 11-84
g Sun-2upg 785 4.2 (Parc-C) A-IP Add Total 64.1 12-84
~. Sun-2upg 750 4.2 (ISI-H) A-IP Add Total 39.3 12-84
e Sun-2upg Another Sun-2 Sun-IKP Add Total 29.0 6-84 :
? Sun-2upg Another Sun-2 Sun-IKP Add Total 44.2 12-84 \
- Sun-2upg Another Sun-1.5 Sun-IKP Add Total 23.0 6-84
s Sun-1.5 Local Add Total 35.0 6-84
' Sun~1.5 750 4.1 (Pescadero) 1P Add Total 6.8 6-84
- Sun-1.5 Another Sun-2 Sun-IKP Add Total 24.5 6-84
., Sun-1.5 Another Sun-1.5 Sun-IKP Add Total 22.3 6-84
. Cadlinc Local Add Total 36.1 12-83
. Cadlinc 780 4.1 (Diablo) Ie Add Total 4.0 12-83
. Cadlinc 780 4.1 (Diablo) PUP Add Total 3.0 12-83
- Cadlinc 780 4.1 (Navajo) 1P Add Total 4.7 12-83
- Cadlinc 780 4.1 (Navajo) PUP Add Total 2.1 12-83
o Cadlinc /80 4.1 (Whilney) VAX-IKP Add Total 6.2 12-83
o Cadlinc 750 4.2 (Coyote) 1P Add Total 7.2 12-83
Cadlinc 750 4.1 (Carmel) VAX-IKP Add Total 4.5 12-83 [
* Cadlinc 750 4.1 (Carmel) 1P Add Total 4.8 12-83 L
. Cadlinc 750 4.1 (Carmel) PUP Add Total 4.7 12-83
r, Cadlinc 780 4.1 (ISI-A) A-1P  Add Total 2.8 12-83 h
| )
4 Table D-2:  Detailed vector graphics results
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D.3 Structured Graphics Benchmark

The structime program was designed to test the effect of structure. Thic benchmark drew an array of 30
NMOS inverters, each consisting of 26 rectangles, for a total of 780 rectangles. The resulting image was about
400 pixcls on a side. Each rectangle was filled with one of four stipple patterns, cach representing one of the
NMOS process layers. In the batch test, cach of the 780 rectangles was added to the SDF, resulting in a single
Icvel, unstrucwured symbol. "The incremental test also used a single-level unstructured symbol, with each of
the 780 rectangles displayed as it was added.

In the structure test, a “contact cut” symbol was definced which consisted of three rectangles. Then an
“inverter” symbol was defined with two calls to the contact cut symbol and 20 other rectangles. 30 instances
of the inverter symbol were then added to the top-level symbol, resulting in a three-level display file. Thus a
total of 23 primitive items and 32 calls were added to the SDF, for a total of 55 items. All numbers arc in
rectangics per sccond. Note that the structure create rate might be considercd unfairly low. The benchmark
divided the total time for creation by the number of primitives added, in this case 23. To obtain the rate
including symbols calls, multiply this rate by 55/23 or about 2.4. The last column gives the month and year
the measurcments were taken.

Sun-1 Local Batch Create 407 6-84
Total 312 6-84
Local Struct Create 145 6-84
. Total 1010 6-84
Local Incre Total 48 6-84
Sun-1 Local Batch Create 398 12-84
Total 307 12-84
Local Struct Create 169 12-84
Total 1070 12-84
Local Incre Total 61 12-84
Sun-1 780 4.1 (Navajo) VAX-IKP Batch Create 287 6-84
Total 207 6-84
VAX-IKP Struct Create 23 6-84
Total 403 6-84
Sun-1 780 4.1 (Navajo) 1P Batch Create 148 6-84
Total 124 6-84
Ip Struct Create 19 6-84
Total 406 6-84
1P Incre Total 4.7 6-84
Sun-1 780 4.1 (Navajo) IP Batch Create 222 12-84
‘Total 210 12-84
1P Struct Create 22 12-84
Total 744 - 12-84
1P Incre Total 71 12-84
Sun-1 780 4.1 (Navajo) PUP Batch Create 1566 6-84
Total 123 6-84
PUP Struct Create 21 6-84
Total 405 6-84
PUP Incre Total 4.4 6-84
Sun-1 780 4.1 (Navajo) PUP Batch Create 171 12-84
Total 164 i2-84
PUP Struct Create 18 12-84
Total 681 12-84
PUP Incre Total 51 12-84
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_';‘Eij Sun-1 750 4.2 (Gregorio) P Batch Create 128 6-84
i . Total 103 6-84
(e IP "Struct Create 24 6-84
- Total 442 6-84
. IP Incre Total 5 .6-84
Lo
:Fj Sun-1 750 4.2 (Gregorio) 1P Batch Create 185 12-84
e Total 175 12-84
-;1 10 Struct Create 20 12-84
P Total 672 12-84
'u\ 1P Incre Total 66.1 12-84
i
sy Sun-1 750 4.2 (Gregorio) PUP Batch  Create 139 12-84
o Total 133 12-84
o PUP Struct Create 17 12-84
."_"_f Total 574 12-84
v PUP Incre Total 36.4 12-84
Sun-1 750 4.2 (Pescadero) VAX-IKP Batch Create 65 6-84
. Total 57 6-84
[ VAX-IKP Struct Create 2 6-84
P -
4-::.1 Total 28 6-84
ﬁ\l Sun-1 780 4.1 (ISI-A) A-1P Batch Create 117 6-84
" Total 94 6-84
A-IP Struct Create 14 6-84
La : Total 305  6-84
l' A-1P Incre Total 3 6-84
R
3,
sp [ Sun-1 750 4.2 (ISI-H) A-1P Batch Create 108 6-84
( Total 75 6-84
A-1IP Struct Create 12 6-84
La Total 257 6-84
A-1P Incre Total 2 6-84
};} Sun-1 780 4.2 (Camelot) I1PGW Batch Create 193 6-84
{;{ Total 146 6-84
o 1PGW Struct Create 20 6-84
N Total 394 6-84
o« 1PGW Incre Total 3.4 6-84
‘4) Sun-1 780 4.2 (Camelot) PUPGW Batch Create 146 6-84
RPN Total 114 6-84
Olyd . PUPGW  Struct Create 20 6-84
'Jﬁ- Total 405 6-84
«
-1-:~‘
u}ﬁ. Sun-1  Another Sun-1 Sun-IKP Batch Create 324 6-84
i % Total 258 6-84
. B Sun-IKP Struct Create 112 6-84
AN Total 835 6-84
v Sun-IKP Incre Total 14.6 6-84
SN ’
B
f::ﬂ Sun-2upg Local Batch Create 398 6-84
Total 304 6-84
r Local  Struct Create 142 6-84
‘N Total 990 6-84
'j:{ Local Incre Total 42 6-84
S Sun-2upg Local Batch Create 391 12-84
e Total 300 12-84
X Local Struct Create 133 12-84
4 Total 975 12-84
Local Incre Total 69 12-84
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:i; Sun-2upg 780 4.1 (Navajo) IPGW Batch  Create 140 6-84
o Total 118 6-84
o) IPGW Struct C(Create 18 6-84
h Total 378 6-84
IPGW Incre Total 4.5 6-84
Sun-2upg 780 4.2 (Navajo) IPGW Batch  Create 207 12-84
Total 202 12-84
1PGW Struct Create 21 12-84
Total 687 12-84
IPGW Incre Total 61 12-84
Sun-2upg 780 4.1 (Navajo) PUPGW  Batch C(Create 128 6-84
Total 99 6-84
PUPGW  Struct C(Create 6.8 6-84
Total 182 6-84
PUPGW Incre Total 1.5 6-84
Sun-2upy 750 4.2 (Gregorio) VAX-IKP Batch (reate 258 6-84

A, Total 173 6-84
- VAX-1KP Struct Create 14 6-84
S Total 287 6-84
S VAX-IKP Incre Total 4.7 6-84
s
ooty Sun-2upy 750 4.2 (Gregorio) VAX-IKP Batch Create 199 12-84
(‘ Total 196 12-84

3 VAX-IKP Struct Create 15 12-84

ﬁg Total 520 12-84
):; VAX-IKP Incre Total 72 12-84

_-("

N Sun-2upg 750 4.2 (Gregorio) 1P Batch Create 176 12-84
AR Total 171 12-84
v 1P Struct Create 19 12-84

Total 670 12-84
1P Incre Total 65 12-84
Sun-2upg 750 4.2 (Pescadero) 1P Batch Create 120 6-84
Total 98 6-84
1P Struct Create 25 6-84
Total 456 6~84
IpP Incre Total 7 6-84
Sun-2upg 780 4.1 (ISI-A) A-1P Batch Create 106 6-84
Total 88 6-84
A-1IP Struct Create 13 6-84
Total 278 6-84
A-1P Incre Total 3.4 6-84
5 Sun-2upg 750 4.2 (ISI-H) A-1pP Batch Create 100 6-84

<. Total 76 6-84
o A-IP  Struct Create 12 6-84
e Total 257 6-84
:;; A-IP  Incre Total 2.7 6-84
1 Sun-2upg 750 4.2 (1SI-H) A-IP  Batch Create 91 12-84

' Total 81 12-84

AN A-1P Struct Create 11.0 12-84

ot Tota) 373 12-84

j\f A-1P Incre Total 35.9 12-84
~ '
i*ﬁ Sun-2upg 780 4.2 (Camelot) 1PGW Batch Create 189 12-84

o Total 185 12-84
b IPGW  Struct Create 14 12-84
- Total 473 12-84

S IPGW  Incre Total 64 12-84
\N;’
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v${¢ Sun-2upg 785 4.2 (Parc-C) A-IP Batch Create 163 11-84
LRy Total 116 11-84
ST, A-IP  Struct Create 15 11-84
- Total 323 11-84
— A-IP Incre Total 3.7 11-84
;\;\ Sun-2upg 785 4.2 (Parc-C) A-IP  Batch Create 126 12-84
1N Total 114 12-84
Cj? A-IP Struct Create 14 12-84
g Total 464 12-84
o A-1P Incre Total 57.9 12-84
o Sun-2upg Another Sun-2 Sun-IKP Batch Create 352 6-84
S Total 277 6-84
AR Sun-IKP Struct Create 112 6-84
=y Total 876 6-84
- Sun-IKP Incre Total 28 6-84
Sun-2upg Another Sun-1.5 Sun-IKF Batch Create 312 6-84
o Total 251 6-84
R Sun-IKP Struct Create 98 6-84
A ] Total 831 6-84
w{ Sun-IKP Incre Total 25 6-84
4 Sun-2 Ltocal Batch Create 439 9-84
B Total 29§ 9-84
Lt Local Struct Create 146 9-84
(<. - Total 748 9-84
S Local Incre Total 44.9  9-84
N
R Sun-2 Local Batch Create 429 12-84
- Total 288 12-84
Local Struct Create 160 12-84
< Total 741 12-84
:;: Local Incre Total 63 12-84
;$I Sun-2 780 4.2 (Navajo) IPGW  Batch Create 193 12-84
o Total 190 12-84
’ IPGW Struct Create 15 12-84
. Total 499 12-84
;7)‘ IPGW Incre Total 70 12-84
T
L Sun-2 750 4.2 (Pescadero) IP Batch Create 150 12-84
o Total 146 12-84
o, 1P Struct Create 16 12-84
" Total 521 12-84
W 1P Incre Total 66.3 12-84
A5y Sun-2 750 4.2 (Gregorio) VAX-IKP Batch Create 205 12-84
e . Total 199 12-84
" VAX-IKP Struct Create 13 12-84
WS Total 452 12-84
: { VAX-1KP Incre Total 68 12-84
y Sun-2 750 4.2 (Gregorio) 1P Batch Create 166 9-84
o Total 131 9-84
. 1P Struct Create 22 9-84
AR Total 383 9-84
:: 1P Incre Total 6.1 9-84
o~
"L Sun-2 750 4.2 (Gregorio) 9600 Batch Create 53.5 9-84
,.' Total 45.9 9-84
3 9600 Struct Create 20.2 9-84
o Total 320 9-84
. 9600  Incre Total 9.8 9-84
b
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Sun-~1,

Sun-1.

Sun~-1,

Sun-1.

Sun-1,

Sun-1.

Sun-1.

‘85

780

750

750

750

750

780

4 7 (Parc

4.1 (Navajo)

4.2 (Pescadero)

4.2 (Pescadero)

4.2 (Pescadero)

4.2 (Pescadero)

4.1 (ISI-A)

4800

480C

4400

40"

2400

Local
Local
Local
1P

IP

1P
VAX-IKP
VAX-1KP
VAX-IKP
1P

1

IP

PUP

PUP

PUP
1200
1200
1200

A-1P

flatch

Struct

Incre

Batch

Struct

Incre

Bat. h

Struct

Incre

Batch

Struct

Incre

Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct
Incre
Batch
Struct

Incre

Batch

Struct

Inrre

Batch

Struct

Incre

Batch .

Struct

Create
Tota}
Create
Tota!
Total

(reate
Tota!
(reate
Total
Total

(reate
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Tota)
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total
fotal

Create
Total
Create
Totatl
Total

Create
Total
Create
Total
Total

Create
Total
Create
Total

25.8
22.5
10.6
233
7.4

223

9-84
9-84
3-84
9-84
9-84

9-84
9-84
9-84
9-84
9-84

9-84
9-84
9-84
9-84
9-84

11-84
11-84
11-84
11-84
11-84
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A-1P Incre Total 2 6-84
Sun-1.5 750 4.2 (ISI-H) A-IP Batch Create 113 6-84
Total 82 6-84
e A-IP Struct Create 11 6-84
vy Total 232 6-84
oy A-IP Incre Tota)d 0.8 6-84
\‘:‘ :
_i} Sun-1.5 Another Sun-2 Sun-IKP Batch Create 306 6-84
R Total 238 6-84
=~ Sun-IKP Struct Create 100 6-84
\ Total 770 6-84
e Sun-IKP Incre Total  24.2 6-84
t{f Sun-1.5 Another Sun-1.5 Sun-IKP Batch Create 279 6-84
e Total 220 6-84
A Sun-I1KP Struct Create 85 6-84
Wiy Total 690 6-84
Sun-IKP Incre Total 22.1 6-84
fl Cadlinc 780 4.1 (Navajo) IP Batch Create 138 6-84
Total 111 6-84
:: 1P Struct Create 18 6-84
- Total 350 6-84.
IP Incre Total 4.6 6-84
> Cadlinc 780 4.1 (Navajo) VAX-IKP Batch Create 272 6-84
N Total 187 6-84
j}; VAX-1KP Struct Create 21 6-84
“~ Total 370 6-84
‘,}.‘: VAX-IKP Incre Total 7.5 6-84
Cadlinc 750 4.2 (Pescadero) IP Batch Create 130 6-84
. Total 99 6-84
. IpP Struct Create 22 6-84
o Total 386 6-84
- 1P Incre Total 4 6-84
L. Cadlinc 780 4.1 (ISI-A) A-1P Batch Create 101 6-84
C:) Total 84 6-84
- A-1P Struct Create 12 6-84
,5; Total 255 6-84
x A-1P Incre Total 2.7 6-84
!':v Cadlinc 750 4.2 (ISI-H) A-1P Batch Create 115 6-84
N Total 75 6-84
*d A-1P Struct Create 12 6-84
Total 251 6-84
AR A-1P Incre Total 2 6-84
t?} Cadlinc 780 4.2 (Camelot) IPGW Batch Create 115 6-34
Total 82 6-84
. 1PGW Struct Creale 12 6-84
e Total 259 6-84
E-"e IPGW Incre Tolal 2.7 6-84
s
Table D-3:  Dctailed structurced graphics results
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L D.4 lllustration Data

These tests were performed on a local 10Mhz workstation with the Sun-1 frame buffer. This table lists the
, number of items, time for display in milliscconds, the resulting rate (including both creation and display) in
L items per sccond, the memory that would be needed to store the bitmap (in thousands of bytes), and and the

K memory used in the SDF (also in thousands of bytes). These experiments were performed in October of

} 1984,

o0 Figure Obiects Time Rate  Bitmap _SDF

\ 1-1 365 1370 266 MK 13K

R 1-2 105 430 244 21K 21K

I3 2-1 71 330 215 17K 14K

B 22 80 360 222 ‘19K 16K

3-1 125 510 245 17K 25K
3-2 137 530 258 19K 27K

% 3-3 115 490 235 9K 23K

Y 3-4 73 360 203 13K LS5K

<y 35 88 400 220 20K 13K

41 132 540 244 27K 36K

& 4-2 157 680 231 28K 31K

5-2 66 280 236 40K 13K

SN 5-3 99 390 254 16K = 20K

_::}' 6-1 33 160 206 10K 07K

i 6-2 101 450 224 13K 20K

I Table D-4: Detailad illustration data
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